Skip to main content
Log in

Synthesis of conductive PPy/graphene/rare-earth ions composites and its application in the electrode materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

PPy/graphene/rare-earth ions composites were prepared by in-situ polymerization. The structure and morphology of the composites are characterized by transmission electron microscope and scanning electron microscope, the results revealed that the graphene nanosheets were distributed homogeneously within the PPy matrix. Cyclic voltammetry was used to study the electrochemical properties of composites in K3Fe(CN)6 (pH 7.4) at a scan rate of 10 mV s−1 with a applied voltage range of −0.2 to 0.6 V, indicating that composite has excellent cycling performance. These results demonstrate the viability of the use of this composites as electrode material for the capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.R. Abidian, D.C. Martin, Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29, 1273–1283 (2008)

    Article  Google Scholar 

  2. V.S. Virendra, G. Garima, S. Rishi, M. Boopathi, Detection of chemical warfare agent Nitrogen Mustard-1 based on conducting polymer phthalocyanine nanorod modified electrode. Synth. Met. 159, 1960–1967 (2009)

    Article  Google Scholar 

  3. M.R. Abidian, D.H. Kim, D.C. Martin, Conducting-polymer nanotubes for controlled drug release. Adv. Mater. 18, 405–409 (2006)

    Article  Google Scholar 

  4. N.J. Yang, C.G. Zoski, Polymer films on electrodes: investigation of ion transport at poly(3,4-ethylenedioxythiophene) films by scanning electrochemical microscopy. Langmuir 22, 10338–10347 (2006)

    Article  Google Scholar 

  5. G.Y. Jin, Y.Z. Zhang, W.X. Cheng, Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid. Sens. Actuators B 107, 528–534 (2005)

    Article  Google Scholar 

  6. K.J. Huang, C.X. Xu, W.Z. Xie, Electrochemical behavior and voltammetric determination of tryptophan based on 4-aminobenzoic acid polymer film modified glassy carbon electrode. Colloids Surf. B 74, 167–171 (2009)

    Article  Google Scholar 

  7. J. Yan, T. Wei, Z.J. Fan, W.Z. Qian, M.L. Zhang, Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sources 195, 3041–3045 (2010)

    Article  Google Scholar 

  8. G.M. Zhou, D.W. Wang, F. Li, L.L. Zhang, The effect of carbon particle morphology on the electrochemical properties of nanocarbon/polyaniline composites in supercapacitors. New Carbon Mater. 26(3), 180–186 (2011)

    Article  Google Scholar 

  9. M. Deng, X. Yang, M. Silke, W.M. Qiu, Electrochemical deposition of polypyrrole /graphene oxide composite on microelectrodes towards tuning the electrochemical properties of neural probes. Sens. Actuators B 13167, 1–9 (2011)

    Google Scholar 

  10. D.C. Zhang, X. Zhang, Y. Chen, P. Yu, Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J. Power Sources 196, 5990–5996 (2011)

    Article  Google Scholar 

  11. N. Hebestreit, J. Hofmann, U. Rammelt, W. Plieth, Physical and electrochemical characterization of nanocomposites formed from polythiophene and titaniumdioxide. Electrochim. Acta 48, 1779–1788 (2003)

    Article  Google Scholar 

  12. D.D. Ateh, A. Waterworth, D. Walker, B.H. Brown, H. Navsaria, P. Vadgama, Impedimetric sensing of cells on polypyrrole-based conducting polymers. J. Biomed. Mater. Res. Part A 83A, 391–400 (2007)

    Article  Google Scholar 

  13. K.Q. Ding, F.M. Cheng, Cyclic voltammetrically prepared MnO2/PPy composite material and its electrocatalysis towards oxygen reduction reaction (ORR). Synth. Met. 159, 2122–2127 (2009)

    Article  Google Scholar 

  14. A.C. Sonavane, A.I. Inamdara, D.S. Dalavia, H.P. Deshmukh, Simple and rapid synthesis of NiO/PPy thin films with improved electrochromic performance. Electrochim. Acta 55, 2344–2351 (2010)

    Article  Google Scholar 

  15. B. Li, Y.L. Xu, J. Chen, G.R. Chen, Synthesis and characterization of Ag/PPy composite films via enhanced redox reaction of metal ions. Appl. Surf. Sci. 256, 235–238 (2009)

    Article  Google Scholar 

  16. A.S. Patole, S.P. Patole, K. Hyuck, A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. J. Colloid Interface Sci. 350, 530–537 (2010)

    Article  Google Scholar 

  17. Y.Y. Zhang, J.P. Hu, B.A. Bernevig, X.R. Wang, X.C. Xie, W.M. Liu, Quantum blockade and loop currents in graphene with topological defects. Phys. Rev. B 78(15), 155413–155418 (2008)

    Article  Google Scholar 

  18. Z.L. Yang, X.J. Shi, J.J. Yuan, H.T. Pu, Preparation of poly (3-hexylthiophene) /graphene nanocomposite via in situ reduction of modified graphite oxide sheets. Appl. Surf. Sci. 257, 138–142 (2010)

    Article  Google Scholar 

  19. M. Myers, J. Copper, B. Pejcic, M. Baker, Functionalized graphene as an aqueous phase chemiresistor sensing material. Sens. Actuators B 12724, 1–5 (2010)

    Google Scholar 

  20. Y.Y. Zhang, J.P. Hu, B.A. Bernevig, X.R. Wang, X.C. Xie, W.M. Liu, Localization and the Kosterlitz–Thouless transition in disordered graphene. Phys. Rev. Lett. 102, 106401–106405 (2009)

    Article  Google Scholar 

  21. S. Vadahanambi, O. Il-Kwon, A coagulation technique for purification of graphene sheets with graphene-reinforced PVA hydrogel as byproduct. J. Colloid Interface Sci. 348, 384–387 (2010)

    Article  Google Scholar 

  22. B. Saswata, K. Tapas, M.E. Uddin, In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51, 5921–5928 (2010)

    Article  Google Scholar 

  23. S. Sumanta, G. Karthikeyan, C.N. Ganesh, Electrochemical characterization of in situ polypyrrole coated graphene nanocomposites. Synth. Met. 147, 1123–1128 (2011)

    Google Scholar 

  24. W. Wu, Y.H. Chen, H.S. Tao, N.H. Tong, W.M. Liu, Interacting Dirac fermions on honeycomb lattice. Phys. Rev. B 82, 245102–245107 (2010)

    Article  Google Scholar 

  25. Y. Zhang, R. Jamal, W.W. Shao, T. Abdiryim, The mechanochemical synthesis of poly (3′,4′-ethylenedioxy-2,2′:2′,5″-terthiophene)/graphene nanoplatelet composites and the electrochemical performance. Electrochim. Acta 113, 382–389 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial supports of the National Natural Science Foundation of China (51262027), the financial support the Natural Science Foundation of Gansu Province (1104GKCA019; 1010RJZA023), Science and Technology Tackle Key Problem Item of Gansu Province (2GS064-A52-036-08) and the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunli Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Z., Zhao, G., Zhang, C. et al. Synthesis of conductive PPy/graphene/rare-earth ions composites and its application in the electrode materials. J Mater Sci: Mater Electron 25, 4714–4719 (2014). https://doi.org/10.1007/s10854-014-2220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2220-8

Keywords

Navigation