Skip to main content
Log in

Oxygen vacancy-related dielectric relaxation and electrical conductivity in La-doped Ba(Zr0.9Ti0.1)O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ba1−xLax (Zr0.9Ti0.1)1−x/4O3 (BLZT) ceramics with x = 0.02 (BLZT-1), 0.04 (BLZT-2), 0.06 (BLZT-3) and 0.08 (BLZT-4) were prepared by a solid-state reaction route. Crystal structure of the BLZT ceramics was determined using X-ray diffraction and Raman spectroscopy. While the ceramics for x ≤ 0.04 are pure phase with cubic perovskite structure, pyrochlore La2Zr2O7 appears in the samples with x = 0.06 and 0.08. Dielectric properties as function of temperature and frequency showed more than one dielectric anomaly were found at high temperatures during heating but they weakened or disappeared during cooling. Both dielectric relaxation and electrical conductivity were taken into account in point defect mechanism. The double-ionized and short-range hopping of oxygen vacancy should be mainly responsible for the dielectric anomalies and conduction behavior. Activation energy of conductivity E con is lower than half of the band gap E g obtained by UV–Vis spectroscopy, which results from emergency of oxygen vacancies. In visible light region, the ceramics show a strong absorption with band gap of about 3.57 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Zheng, E. Odendo, L. Liu, D. Shi, Y. Huang, L. Fan, J. Chen, L. Fang, B. Elouadi, J. Appl. Phys. 113, 094102 (2013)

    Article  Google Scholar 

  2. L.J. Liu, S.Y. Zheng, Y.M. Huang, D.P. Shi, S.S. Wu, L. Fang, C.Z. Hu, B. Elouadi, J. Phys. D Appl. Phys. 45, 295403 (2012)

    Article  Google Scholar 

  3. X. Ren, Nat. Mater. 3, 91–94 (2004)

    Google Scholar 

  4. M.M. Gallego, A.R. West, J. Appl. Phys. 90, 394 (2001)

    Article  Google Scholar 

  5. J.F. Ihlefeld, W.J. Borland, J.-P. Maria, Adv. Funct. Mater. 17, 1199 (2007)

    Article  Google Scholar 

  6. G.C. Deng, G.R. Li, A.L. Ding, Q.R. Yin, Appl. Phys. Lett. 87, 192905 (2005)

    Article  Google Scholar 

  7. D.I. Woodward, I.M. Reaney, G.Y. Yang, E.C. Dickey, C.A. Randall, Appl. Phys. Lett. 84, 4650 (2004)

    Article  Google Scholar 

  8. G.Y. Yang, E.C. Dickey, C.A. Randall, J. Appl. Phys. 94, 5990 (2003)

    Article  Google Scholar 

  9. D.W. Johnson, L.E. Cross, F.A. Hummel, J. Appl. Phys. 41, 2828 (1970)

    Article  Google Scholar 

  10. B.S. Kang, S.K. Choi, Solid State Commun. 121, 441–446 (2002)

    Article  Google Scholar 

  11. F.D. Morrison, D.C. Sinclair, A.R. West, J. App. Phys. 86, 6355–6366 (1999)

    Article  Google Scholar 

  12. G.H. Jonker, E.E. Havinga, Mat. Res. Bull. 17, 345–350 (1982)

    Article  Google Scholar 

  13. D. Makovec, Z. Samardzija, U. Delalut, D. Kolar, J. Am. Ceram. Soc. 78, 2193–2197 (1995)

    Article  Google Scholar 

  14. F.D. Morrison, D.C. Sinclair, J.M.S. Skakle, A.R. West, J. Am. Ceram. Soc. 81, 1957–1960 (1998)

    Article  Google Scholar 

  15. H.I. Yoo, S.W. Lee, C.E. Lee, J. Electroceramics 10, 215–219 (2003)

    Article  Google Scholar 

  16. H.I. Yoo, C.E. Lee, J. Am. Ceram. Soc. 88, 617–623 (2005)

    Article  Google Scholar 

  17. D.M. Smyth, J. Electroceramics 9, 179–186 (2002)

    Article  Google Scholar 

  18. F.D. Morrison, A.M. Coats, D.C. Sinclair, A.R. West, J. Electroceramics 6, 219–232 (2001)

    Article  Google Scholar 

  19. C.L. Freeman, J.A. Dawson, H.-R. Chen, L.-B. Ben, J.H. Harding, F.D. Morrison, D.C. Sinclair, A.R. West, Adv. Funct. Mater. 23, 3925–3928 (2013)

    Article  Google Scholar 

  20. C.L. Freeman, J.A. Dawson, J.H. Harding, L.-B. Ben, D.C. Sinclair, Adv. Funct. Mater. 23, 491–495 (2013)

    Article  Google Scholar 

  21. N.W. Thomas, J. Phys. Chem. Solids 51, 1419–1431 (1990)

    Google Scholar 

  22. C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  Google Scholar 

  23. A. Coelho, TOPAS-Academic V4. 1 (Coelho Software, Brisbane, 2007)

    Google Scholar 

  24. N.K. Karan, R.S. Katiyar, T. Maiti, R. Guo, A.S. Bhalla, J. Raman Spectrosc. 40, 370–375 (2009)

    Article  Google Scholar 

  25. S. Zheng, L. Fan, E. Odendo, L. Liu, D. Shi, G. Li, J. Chen, L. Fang, B. Elouadi, Curr. Appl. Phys. 14, 13–17 (2014)

    Article  Google Scholar 

  26. B.S. Kang, S.K. Choi, C.H. Park, J. Appl. Phys. 94, 1904 (2003)

    Article  Google Scholar 

  27. L.J. Liu, Y.M. Huang, Y.H. Li, M.X. Wu, L. Fang, C.Z. Hu, Y.Z. Wang, Phys. B 407, 136–139 (2012)

    Article  Google Scholar 

  28. J.R. Donald, Ann. Biome. Eng. 20, 289–305 (1992)

    Article  Google Scholar 

  29. S. Dutta, R.N.P. Choudhary, P.K. Sinha, Ceram. Int. 33, 13–20 (2007)

    Article  Google Scholar 

  30. X. Yao, Z.L. Chen, L.E. Cross, J. Appl. Phys. 54, 3399 (1983)

    Article  Google Scholar 

  31. L. Zhang, Z.J. Tang, Phys. Rev. B 70, 174306 (2004)

    Article  Google Scholar 

  32. S. Poykko, D.J. Chadi, Appl. Phys. Lett. 76, 499 (2000)

    Article  Google Scholar 

  33. S. Steinsvik, R. Bugge, J. Gjonnes, J. Phys. Chem. Solids 58, 969–976 (1997)

    Google Scholar 

  34. A. Karmakar, S. Majumdar, S. Giri, Phys. Rev. B 79, 094406 (2009)

    Article  Google Scholar 

  35. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1996)

    Google Scholar 

  36. R.H. Chen, R.Y. Chang, S.C. Shern, J. Phys. Chem. Solids 63, 2069–2077 (2002)

    Google Scholar 

  37. A.D.S. Peláiz-Barranco, J. Guerra, R. López-Noda, E.B. Aráujo, J. Phys. D Appl. Phys. 41, 215503 (2008)

    Article  Google Scholar 

  38. A. Dutta, C. Bharti, T.P. Sinha, Phys. B 403, 3389–3393 (2008)

    Article  Google Scholar 

  39. E.A. Davis, N.F. Mott, Philo. Mag. 22, 903–922 (1970)

    Article  Google Scholar 

  40. R. Rawal, A. Feteira, A.A. Flores, N.C. Hyatt, A.R. West, D.C. Sinclair, J. Am. Ceram. Soc. 89, 336–339 (2006)

    Article  Google Scholar 

  41. Q. Zhang, J. Zhai, Q. Ben, X. Yu, X. Yao, J. Appl. Phys. 112, 104104 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (Nos. 11264010, 51002036, 50962004, 21061004 and 51102058), the Project of Department of Science and Technology of Guangxi (Nos. 12118017-13, 10-046-01, 11-031-03 and 11107006-42), the Natural Science Foundation of Guangxi (Grant No. BA053007) and by the Program for Excellent Talents in Guangxi Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laijun Liu or Liang Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Shi, D., Liu, L. et al. Oxygen vacancy-related dielectric relaxation and electrical conductivity in La-doped Ba(Zr0.9Ti0.1)O3 ceramics. J Mater Sci: Mater Electron 25, 4058–4065 (2014). https://doi.org/10.1007/s10854-014-2129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2129-2

Keywords

Navigation