Skip to main content
Log in

Doping effect in Ca3Co4−xZnxOy ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ca3Co4−xZnxOy (x = 0.01, 0.03, and 0.05) polycrystalline thermoelectric ceramics have been prepared by the classical solid state method. XRD data have shown that Ca3Co4O9 is the major phase, with small amounts of the Ca3Co2O6 one. Moreover, it has been found that the Zn has been incorporated into these two phases. Slight Zn doping decreases electrical resistivity compared with the values obtained in undoped samples. The minimum values have been obtained for the 0.01-Ni doped samples, increasing for further Zn substitution. Seebeck coefficient does not appreciably change in all the measured temperature range, independently of Zn content. The improvement in electrical resistivity leads to higher power factor values for the 0.01 Zn-doped samples (about 30 %) than for the undoped ones. The maximum power factor at 800 °C, around 0.27 mW/K2 m is significantly higher than the best results obtained in Zn doped samples reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.M. Rowe, in Thermoelectrics Handbook: Macro to Nano, ed. by D.M. Rowe (CRC Press, Boca Raton, FL, 2006), pp. 1–3

  2. G. Mahan, B. Sales, J. Sharp, Phys. Today 50, 42 (1997)

    Article  Google Scholar 

  3. H. Naito, Y. Kohsaka, D. Cooke, H. Arashi, Sol. Energy 58, 191 (1996)

    Article  Google Scholar 

  4. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, 12685 (1997)

    Article  Google Scholar 

  5. Y. Huang, B. Zhao, J. Fang, R. Ang, Y. Sun, J. Appl. Phys. 110, 123713 (2011)

    Article  Google Scholar 

  6. A. Sotelo, G. Constantinescu, Sh. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, J. Eur. Ceram. Soc. 32, 2415 (2012)

    Article  Google Scholar 

  7. N. Sun, S.T. Dong, B.B. Zhang, Y.B. Chen, J. Zhou, S.T. Zhang, Z.B. Gu, S.H. Yao, Y.F. Chen, J. Appl. Phys. 114, 043705 (2013)

    Article  Google Scholar 

  8. J.C. Diez, E. Guilmeau, M.A. Madre, S. Marinel, S. Lemmonier, A. Sotelo, Solid State Ionics 180, 827 (2009)

    Article  Google Scholar 

  9. X.G. Luo, Y.C. Jing, H. Chen, X.H. Chen, J. Crystal Growth 308, 309 (2007)

    Article  Google Scholar 

  10. A. Sotelo, E. Guilmeau, Sh. Rasekh, M.A. Madre, S. Marinel, J.C. Diez, J. Eur. Ceram. Soc. 30, 1815 (2010)

    Article  Google Scholar 

  11. R. Ang, Y.P. Sun, X. Luo, W.H. Song, J. Appl. Phys. 102, 073721 (2007)

    Article  Google Scholar 

  12. Sh. Rasekh, G. Constantinescu, M.A. Torres, M.A. Madre, J.C. Diez, A. Sotelo, Adv. Appl. Ceram. 111, 490 (2012)

    Article  Google Scholar 

  13. Y. Miyazaki, Solid State Ionics 172, 463 (2004)

    Article  Google Scholar 

  14. H. Wang, X. Sun, X. Yan, D. Huo, X. Li, J.-G. Li, X. Ding, J. Alloys Compds. 582, 294 (2014)

    Article  Google Scholar 

  15. S. Butt, Y.-C- Liu, J.-L. Lan, K. Shehzad, B. Zhan, Y. Lin, C.-W. Nan, J. Alloys Compds. 588, 277 (2014)

  16. A. Sotelo, E. Guilmeau, M.A. Madre, S. Marinel, S. Lemmonier, J.C. Diez, Bol. Soc. Esp. Ceram. 47, 225 (2008)

    Article  Google Scholar 

  17. N.M. Ferreira, Sh. Rasekh, F.M. Costa, M.A. Madre, A. Sotelo, J.C. Diez, M.A. Torres, Mater. Lett. 83, 144 (2012)

    Article  Google Scholar 

  18. J.C. Diez, Sh. Rasekh, M.A. Madre, E. Guilmeau, S. Marinel, A. Sotelo, J. Electron. Mater. 39, 1601 (2010)

    Article  Google Scholar 

  19. G. Constantinescu, Sh. Rasekh, M.A. Torres, M.A. Madre, J.C. Diez, A. Sotelo, Scripta Mater. 68, 75 (2013)

    Article  Google Scholar 

  20. A. Maignan, D. Pelloquin, S. Hébert, Y. Klein, M. Hervieu, Bol. Soc. Esp. Ceram. 45, 122 (2006)

    Article  Google Scholar 

  21. G. Constantinescu, Sh. Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, A. Sotelo, J. Alloys Compds. 577, 511 (2013)

    Article  Google Scholar 

  22. S. Demirel, M.A. Aksan, S. Altin, J. Mater. Sci. Mater. Electron. 23, 2251 (2012)

    Google Scholar 

  23. J.C. Diez, M.A. Torres, Sh. Rasekh, G. Constantinescu, M.A. Madre, A. Sotelo, Ceram. Int. 39, 6051 (2013)

    Article  Google Scholar 

  24. S. Pinitsoontorn, N. Lerssongkram, N. Keawprak, V. Amornkitbamrung, J. Mater. Sci. Mater. Electron. 23, 1050 (2012)

    Google Scholar 

  25. A. Sotelo, Sh. Rasekh, E. Guilmeau, M.A. Madre, M.A. Torres, S. Marinel, J.C. Diez, Mater. Res. Bull. 46, 2537 (2011)

    Article  Google Scholar 

  26. J. Liu, H.S. Yang, Y.S. Chai, L. Zhu, H. Qu, C.H. Sun, H.X. Gao, X.D. Chen, K.Q. Ruan, L.Z. Cao, Phys. Lett. A 356, 85 (2006)

    Article  Google Scholar 

  27. A. Sotelo, Sh. Rasekh, M.A. Madre, E. Guilmeau, S. Marinel, J.C. Diez, J. Eur. Ceram. Soc. 31, 1763 (2011)

    Article  Google Scholar 

  28. M.A. Madre, F.M. Costa, N.M. Ferreira, A. Sotelo, M.A. Torres, G. Constantinescu, Sh. Rasekh, J.C. Diez, J. Eur. Ceram. Soc. 33, 1747 (2013)

    Article  Google Scholar 

  29. T. Kajitani, K. Yubuta, X.Y. Huang, Y. Miyazaki, J. Electron. Mater. 38, 1462 (2009)

    Article  Google Scholar 

  30. C.H. Hervoches, H. Okamoto, A. Kjekshus, H. Fjellvag, B. Hauback, J. Solid State Chem. 182, 331 (2009)

    Article  Google Scholar 

  31. Sh. Rasekh, M.A. Torres, G. Constantinescu, M.A. Madre, J.C. Diez, A. Sotelo, J. Mater. Sci. Mater. Electron. 24, 2309 (2013)

    Google Scholar 

  32. D. Sedmidubský, V. Jakes, O. Jankovský, J. Leitner, Z. Sofer, J. Hejtmánek, J. Solid State Chem. 194, 199 (2012)

    Article  Google Scholar 

  33. Y. Wang, Y. Sui, X. Wang, W. Su, X. Liu, J. Appl. Phys. 107, 033708 (2010)

    Article  Google Scholar 

  34. N. Wu, T.C. Holgate, N.V. Nong, N. Pryds, S. Linderoth, J. Eur. Ceram. Soc. 34, 925 (2014)

    Article  Google Scholar 

  35. Y.H. Lin, J. Lan, Z.J. Shen, Y.H. Liu, C.W. Nan, J.F. Li, Appl. Phys. Lett. 94, 072107 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Gobierno de Aragón (Research Groups T12 and T87) and the MINECO-FEDER (MAT2013-46505-C3-1-R) for financial support. The technical contributions of C. Estepa, and C. Gallego are also acknowledged. Sh. Rasekh acknowledges a JAE-PreDoc 2010 grant from CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sotelo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasekh, S., Constantinescu, G., Bosque, P. et al. Doping effect in Ca3Co4−xZnxOy ceramics. J Mater Sci: Mater Electron 25, 4033–4038 (2014). https://doi.org/10.1007/s10854-014-2125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2125-6

Keywords

Navigation