Journal of Materials Science: Materials in Electronics

, Volume 25, Issue 9, pp 3990–3995 | Cite as

Preparation and characterization of NiMn2O4 negative temperature coefficient ceramics by solid-state coordination reaction

  • Hong Gao
  • Chengjian Ma
  • Bin Sun


The influence of synthesis parameters, such as calcination temperature and sintering temperature, on the microstructure, phase composition, and electrical properties of NiMn2O4 negative temperature coefficient (NTC) ceramics was systematically investigated. The NiMn2O4 NTC ceramics were synthesized via solid-state coordination reaction. With increasing sintering temperatures, the relative density increased, whereas the porosity decreased. Single-phase, cubic spinel ceramic was obtained following sintering at 900 and 1,050 °C, whereas a secondary phase, i.e., NiO, was detected when the sintering temperature was higher than 1,100 °C. High-density ceramics were obtained when the sintering temperature was higher than 1,100 °C, and featured the lowest room temperature resistivity of 2,924 Ω cm and thermal constant B of 3,429 K. The latter parameter reflects the temperature sensitivity of the NTC ceramics. Variations of the electrical property were because of increases in density and onset of decomposition.


Sinter Temperature Calcination Temperature Octahedral Site Spinel Structure Negative Temperature Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Feteira, J. Am. Ceram. Soc. 92, 967–983 (2009)CrossRefGoogle Scholar
  2. 2.
    H. Schulze, J. Li, E.C. Dickey, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 738–744 (2009)CrossRefGoogle Scholar
  3. 3.
    W. Luo, H.M. Yao, P.H. Yang, C.S. Chen, J. Am. Ceram. Soc. 92, 2682–2686 (2009)CrossRefGoogle Scholar
  4. 4.
    K.E. Sickafus, J.M. Wills, N.W. Grimes, J. Am. Ceram. Soc. 82, 3279–3292 (1999)CrossRefGoogle Scholar
  5. 5.
    K. Park, J. Am. Ceram. Soc. 88, 862–866 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Sagua, G.M. Lescano, J.A. Alonso, R. Martínez-Coronado, M.T. Fernández-Díaz, E. Morán, Mater. Res. Bull. 47, 1335–1338 (2012)CrossRefGoogle Scholar
  7. 7.
    W.A. Groen, C. Metzmacher, V. Zaspalis, P. Huppertz, S. Schuurman, J. Eur. Ceram. Soc. 21, 1793–1796 (2001)CrossRefGoogle Scholar
  8. 8.
    S. Fritsch, J. Sarrias, M. Brieu, J.J. Couderc, J.L. Baudour, E. Snoeck, A. Rousset, Solid State Ion 109, 229–237 (1998)CrossRefGoogle Scholar
  9. 9.
    D.-F. Li, S.-X. Zhao, K. Xiong, H.-Q. Bao, C.-W. Nan, J Alloys Compd 582, 283–288 (2014)CrossRefGoogle Scholar
  10. 10.
    N. El Horr, S. Guillemet-Fritsch, A. Rousset, H. Bordeneuve, C. Tenailleau, J. Eur. Ceram. Soc. 34, 317–326 (2014)CrossRefGoogle Scholar
  11. 11.
    R. Schmidt, A. Stiegelschmitt, A. Roosen, A.W. Brinkman, J. Eur. Ceram. Soc. 23, 1549–1558 (2003)CrossRefGoogle Scholar
  12. 12.
    C. Zhao, Y. Zhao, Y. Wang, Solid State Commun. 152, 593–595 (2012)CrossRefGoogle Scholar
  13. 13.
    Dl Fang, Z.B. Wang, P.H. Yang, W. Liu, C.S. Chen, A.J.A. Winnubst, J. Am. Ceram. Soc. 89, 230–235 (2006)CrossRefGoogle Scholar
  14. 14.
    C. Ma, Y. Liu, Y. Lu, H. Gao, H. Qian, J. Ding, J. Mater. Sci.: Mater. Electron. 24, 5183–5188 (2013)Google Scholar
  15. 15.
    T. Cheng, R. Raj, J. Am. Ceram. Soc. 71, 276–280 (1988)CrossRefGoogle Scholar
  16. 16.
    K. Park, I.H. Han, Mater. Sci. Eng., B 119, 55–60 (2005)CrossRefGoogle Scholar
  17. 17.
    K. Park, D.Y. Bang, J. Mater. Sci.: Mater. Electron. 14, 81–87 (2003)Google Scholar
  18. 18.
    T. Reimann, J. Töpfer, S. Barth, H. Bartsch, J. Müller, Int. J. Appl. Ceram. Technol. 10, 428–434 (2013)CrossRefGoogle Scholar
  19. 19.
    O. Bodak, L. Akselrud, P. Demchenmko, B. Kotur, O. Mrooz, I. Hadzaman, O. Shpotyuk, F. Aldinger, H. Seifert, S. Volkov, V. Pekhnyo, J Alloys Compd 347, 14–23 (2002)CrossRefGoogle Scholar
  20. 20.
    K. Park, I.H. Han, J. Electroceram. 17, 1069–1073 (2006)CrossRefGoogle Scholar
  21. 21.
    K. Park, D.Y. Bang, J.G. Kim, J.Y. Kim, C.H. Lee, B.H. Choi, J Korean Phys Soc 41, 251–256 (2002)Google Scholar
  22. 22.
    J. Töpfer, J. Jung, Thermochim. Acta 202, 281–289 (1992)CrossRefGoogle Scholar
  23. 23.
    B. Gillot, J.L. Baudour, F. Bouree, R. Metz, R. Legros, A. Rousset, Solid State Ion 58, 155–161 (1992)CrossRefGoogle Scholar
  24. 24.
    T. Yokoyama, T. Meguro, S. Okazaki, H. Fujikawa, T. Ishikawa, J. Tatami, T. Wakihara, K. Komeya, T. Sasamoto, Adv. Mater. Res. 29–30, 359–362 (2007)CrossRefGoogle Scholar
  25. 25.
    J.L. Martín de Vidales, R.M. Rojas, E. Vila, O. García-Martínez, Mater. Res. Bull. 29, 1163–1173 (1994)CrossRefGoogle Scholar
  26. 26.
    C. Laberty, P. Alphonse, J.J. Demai, C. Sarda, A. Rousset, Mater. Res. Bull. 32, 249–261 (1997)CrossRefGoogle Scholar
  27. 27.
    T. Xiao-Xia, A. Manthiram, J.B. Goodenough, J Less Common Met 156, 357–368 (1989)CrossRefGoogle Scholar
  28. 28.
    D.G. Wickham, J. Inorg. Nucl. Chem. 26, 1369–1377 (1964)CrossRefGoogle Scholar
  29. 29.
    J. Jung, J. Töpfer, A. Feltz, J. Therm. Anal. Calorim. 36, 1505–1518 (1990)CrossRefGoogle Scholar
  30. 30.
    K. Park, J.K. Lee, J Alloys Compd 475, 513–517 (2009)CrossRefGoogle Scholar
  31. 31.
    K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, S. Nahm, J Alloys Compd 467, 310–316 (2009)CrossRefGoogle Scholar
  32. 32.
    J. Junga, J. Töpfera, J. Mürbeb, A. Feltz, J. Eur. Ceram. Soc. 6, 351–359 (1990)CrossRefGoogle Scholar
  33. 33.
    A. Feltz, W. Polzl, J. Eur. Ceram. Soc. 20, 2353–2366 (2000)CrossRefGoogle Scholar
  34. 34.
    G.D.C. Csete de Györgyfalva, I.M. Reaney, J. Eur. Ceram. Soc. 21, 2145–2148 (2001)CrossRefGoogle Scholar
  35. 35.
    R.J.A.E.G. Larson, D.G. Wickham, J. Phys. Chem. Solids 23, 1771–1781 (1962)Google Scholar
  36. 36.
    S.E. Dorris, T.O. Mason, J. Am. Ceram. Soc. 71, 379–385 (1988)CrossRefGoogle Scholar
  37. 37.
    H. Zhang, A. Chang, C. Peng, Microelectron. Eng. 88, 2934–2940 (2011)CrossRefGoogle Scholar
  38. 38.
    S.A. Kanade, V. Puri, J Alloys Compd 475, 352–355 (2009)CrossRefGoogle Scholar
  39. 39.
    K. Park, S.J. Kim, J.G. Kim, S. Nahm, J. Eur. Ceram. Soc. 27, 2009–2016 (2007)CrossRefGoogle Scholar
  40. 40.
    S.A. Kanade, V. Puri, Mater. Lett. 60, 1428–1431 (2006)CrossRefGoogle Scholar
  41. 41.
    K. Park, J.K. Lee, J.G. Kim, S. Nahm, J Alloys Compd 437, 211–214 (2007)CrossRefGoogle Scholar
  42. 42.
    K. Park, Mater. Sci. Eng., B 104, 9–14 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsYancheng Institute of TechnologyYanchengChina
  2. 2.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  3. 3.The Jiangsu Bingyang Refrigeration and Air Conditioning Co., Ltd.YanchengChina

Personalised recommendations