Skip to main content
Log in

The effects of nanoparticle shape on electrical conductivity of Ag nanomaterials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver nanomaterials have a wide application in printed electronics due to their excellent electrical conductivity. However, less studies were done to investigate the effects of nanoparticle shape on conductance. In this work, silver nanocubes with edge length of 45 nm and silver nanospheres with the same diameter of 45 nm were successfully prepared via polyol synthesis, and then characterized by scan electron microscopy, transmission electron microscopy, ultraviolet–visible spectrophotometry and dynamic light scattering. Subsequently, the electric conductivities of pastes filled with Ag nanocubes and Ag nanospheres were measured using four point probe resistance measurement by coating on glasses, the result of which showed that, the conductance of Ag nanospheres paste was much superior to that of Ag nanocubes paste with the same silver content and with or without the same mass ratio of m(Ag)/m(PVP). The possible underlying mechanism was further deeply analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Guo, W. Gan, F. Xiang, J. Zhang, H. Zhou, H. Liu, J. Luo, J. Mater. Sci. Mater. Electron. 22, 5 (2011)

    Google Scholar 

  2. S. Zhao, Z. Meng, C. Wu, S. Xiong, M. Wong, H.S. Kwok, J. Mater. Sci. Mater. Electron. 18, 1 (2007)

    Google Scholar 

  3. K. Janeczek, M. Jakubowska, A. Młożniak, G. Kozioł, Mater. Sci. Eng. B 177, 15 (2012)

    Article  Google Scholar 

  4. Y. Zhang, Z. Li, H. Li, J. Gao, J. Zhang, Y. Zeng, J. Mater. Sci. Mater. Electron. (2014). doi:10.1007/s10854-014-1930-2

    Google Scholar 

  5. L. Grande, V.T. Chundi, D. Wei, C. Bower, P. Andrew, T. Ryhänen, Particuology 10, 1 (2012)

    Article  Google Scholar 

  6. Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, C.-P. Wong, ACS Appl. Mater. Int. 6, 1 (2013)

    Google Scholar 

  7. V. Gurin, D. Kovalenko, V. Petranovskii, N. Bogdanchikova, J. Mater. Sci. Mater. Electron. 14, 5–7 (2003)

    Google Scholar 

  8. W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, J. Mater. Sci. Mater. Electron. 24, 12 (2013)

    Google Scholar 

  9. J. Parrott, Proc. Phys. Soc. 85, 6 (1965)

    Article  Google Scholar 

  10. H. Wu, J. Liu, X. Wu, M. Ge, Y. Wang, G. Zhang, J. Jiang, Int. J. Adhes. Adhes. 26, 8 (2006)

    Article  Google Scholar 

  11. H.-H. Lee, K.-S. Chou, K.-C. Huang, Nanotechnology 16, 10 (2005)

    Article  Google Scholar 

  12. C.-L. Lee, K.-C. Chang, C.-M. Syu, Colloid Surf. A 381, 1 (2011)

    Article  Google Scholar 

  13. A.R. Siekkinen, J.M. McLellan, J. Chen, Y. Xia, Chem. Phys. Lett. 432, 4 (2006)

    Google Scholar 

  14. P. Christopher, S. Linic, ChemCatChem 2, 1 (2010)

    Article  Google Scholar 

  15. R. Xu, D. Wang, J. Zhang, Y. Li, Chem. Asian J. 1, 6 (2006)

    Article  Google Scholar 

  16. R. Narayanan, M.A. El-Sayed, J. Am. Chem. Soc. 126, 23 (2004)

    Article  Google Scholar 

  17. Y. Zhu, X. Lang, W. Zheng, Q. Jiang, ACS Nano 4, 7 (2010)

    Google Scholar 

  18. Q. Zhang, C. Cobley, L. Au, M. McKiernan, A. Schwartz, L.-P. Wen, J. Chen, Y. Xia, ACS Appl. Mater. Int. 1, 9 (2009)

    Google Scholar 

  19. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48, 1 (2009)

    Article  Google Scholar 

  20. L. Li, J. Sun, X. Li, Y. Zhang, Z. Wang, C. Wang, J. Dai, Q. Wang, Biomaterials 33, 6 (2012)

    Google Scholar 

  21. D.S. McLachlan, M. Blaszkiewicz, R.E. Newnham, J. Am. Ceram. Soc. 73, 8 (1990)

    Article  Google Scholar 

  22. K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Appl. Phys. Lett. 97, 14 (2010)

    Article  Google Scholar 

  23. G. Ruschau, S. Yoshikawa, R. Newnham, J. Appl. Phys. 72, 3 (1992)

    Article  Google Scholar 

  24. P.-B. He, X.C. Xie, W.M. Liu, Phys. Rev. B 72, 172411 (2005)

    Article  Google Scholar 

  25. Z.-D. Li, Q.-Y. Li, L. Li, W.M. Liu, Phys. Rev. E 76, 026605 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Chinese Natural Science Foundation project (No. 31300820), Beijing Municipal Commission of Education project (No. 18190114/006), Key project of National Natural Science Foundation of China (No. 91123034), National Key Technology R&D program (No. 2012BAF13B05), a National Distinguished Young Scholars Grant (No. 31225009) from the National Natural Science Foundation of China and the “Strategic Priority Research Program” of the Chinese Academy of Sciences, Grant No. XDA09030301.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Han or Yen Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Zhao, YX., Liu, CM. et al. The effects of nanoparticle shape on electrical conductivity of Ag nanomaterials. J Mater Sci: Mater Electron 25, 3870–3877 (2014). https://doi.org/10.1007/s10854-014-2101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2101-1

Keywords

Navigation