Skip to main content
Log in

Enhanced photocatalytic of N/F-doped-NaTaO3 photocatalyst synthesized by hydrothermal method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

N/F-doped NaTaO3 powders were synthesized via a hydrothermal method at 160 °C. The influences of N/F co-doping on the crystal structure, morphology and photocatalytic properties of the NaTaO3 powders were investigated systematically. Rietveld refinement of X-ray diffraction data confirm that the nanoparticles of pure NaTaO3 have orthorhombic structures with Pc21n:bca and Ta2O5 can be obtained by doping N/F molar ratio (NaOH/NH4F ≤ 1) with the orthorhombic P2 mm:cab space group. The NaTaO3 powders are transformed from orthorhombic Pc21n:bca into monoclinic P2/m:b space group with the NaOH/NH4F molar ratio (NaOH/NH4F > 1). The well-defined cubic block NaTaO3 single-crystalline particles with the size of 0.5 μm are determined using TEM and grow preferentially along (101) and (010) crystal planes. The photocatalytic activities were evaluated by the degradation of Rhodamine B under UV-light irradiation. The possible mechanism is proposed to discuss the enhanced photocatalytic activity based on the increasing separation efficiency of photoinduced charge. The results illustrate that the obtained monoclinic N/F-NaTaO3 (NaOH/NH4F = 1.5/1.0) powder exhibits the best photocatalytic activity with the UV-light irradiation for 210 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 7, 238 (1972)

    Google Scholar 

  2. J. Senthilnathan, L. Philip, Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chem. Eng. J. 161, 83–92 (2010)

    Article  Google Scholar 

  3. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  Google Scholar 

  4. O. Vázquez-Cuchillo, A. Cruz-López, L.M. Bautista-Carrillo, A. Bautista Hernández, L.M. Torres-Martínez, S.W. Lee, Synthesis of TiO2 using different hydrolysis catalysts and doped with Zn for efficient degradation of aqueous phase pollutants under UV light. Res. Chem. Intermed. 36, 103 (2010)

    Article  Google Scholar 

  5. S. Lee, I.S. Cho, D.K. Lee, D.W. Kim, C.H. Kwak, S. Park, K.S. Hong, J.K. Lee, H.S. Jung, Influence of nitrogen chemical state on photocatalytic activities of nitrogen-doped TiO2 nanoparticles under visible light. J. Photochem. Photobiol. A 213, 129–135 (2010)

    Article  Google Scholar 

  6. R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49–3, 741–772 (2011)

    Article  Google Scholar 

  7. B. Zielinska, A.W. Morawski, TiO2 photocatalysts promoted by alkali metals. Appl. Catal B Environ. 55, 221–226 (2005)

    Article  Google Scholar 

  8. S. Onsuratoom, S.C. Vadej, T. Sreethawong, Hydrogen production from water under UV light irradiation over Ag-loaded mesoporo assembled TiO2–ZrO2 mixed oxide nanocrystals photocatalysts. Int. J. Hydrogen Energy 36, 5246–5261 (2011)

    Article  Google Scholar 

  9. Y. Wang, C. Feng, M. Zhang, J. Yang, Z. Zhang, Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen. Appl. Catal. B 100, 84–90 (2010)

    Article  Google Scholar 

  10. G. Xiuquan, B. Wang, Q. Zhang, Y. Zhao, Y. Qiang, Preparation of ultrathin TiO2 single-crystal nanowires for high performance dye sensitized solar cells. J. Mater. Sci. Mater. Electron. 24, 520–523 (2013)

    Google Scholar 

  11. M. Dang, Y. Zhou, H. Li, C. Lv, Preparation and photocatalytic activity of N-doped TiO2 nanotube array films. J. Mater. Sci. Mater. Electron. 23, 320–324 (2012)

    Google Scholar 

  12. S. Kumar, B. Kumar, g-C3N4/NaTaO3 organic–inorganic hybrid nanocomposite: high-performance and recyclable visible light driven photocatalyst. Mater. Res. Bull. 49, 310–318 (2014)

    Article  Google Scholar 

  13. J. Xing, W.Q. Fang, H.J. Zhao, H.G. Yang, Inorganic photocatalysts for overall water splitting. Chem. Asian J. 7, 642–657 (2012)

    Article  Google Scholar 

  14. V. Shanker, S.L. Samai, G.K. Pradhan, C. Narayana, A.K. Ganguli, Nanocrystalline NaNbO3 and NaTaO3: rietveld studies, Raman spectroscopy and dielectric properties. Solid State Sci. 11, 562–569 (2009)

    Article  Google Scholar 

  15. H. Kato, A. Kudo, Water splitting into H2 and O2 on alkali tantalite photocatalysts ATaO3 (A = Li, Na, and K). J. Phys. Chem. B 105, 4285–4292 (2001)

    Google Scholar 

  16. A. Kudo, H. Kato, S. Nakagawa, Water splitting into H2 and O2 on new Sr2 M2O7 (M = Nb and Ta) photocatalytics with layered perovskite structure: factors affecting the photocatalytic activity. J. Phys. Chem. B 10, 571–575 (2000)

    Google Scholar 

  17. H. Chechia, H. Teng, Influence of structural features on the photocatalytic activity of NaTaO3 powders from different synthesis methods. Appl. Catal. A Gen. 331, 44–50 (2007)

    Article  Google Scholar 

  18. W. Jiang, X.L. Jiao, D.R. Chen, Photocatalytic water splitting of surfactant-free fabricated high surface area NaTaO3 nanocrystals. Int. J. Hydrogen Energy 38, 12739–12746 (2013)

    Article  Google Scholar 

  19. A. Iwase, H. Kato, The effect of Au cocatalyst loaded on La-doped NaTaO3 on photocatalytic water splitting and O2 photoreduction. Appl. Catal B Environ. 136–137, 89–93 (2013)

    Article  Google Scholar 

  20. H. Kato, K. Asakura, A. Kudo, Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003)

    Article  Google Scholar 

  21. A. Kuda, H. Kato, Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem. Phys. Lett. 331, 373–377 (2000)

    Google Scholar 

  22. C.C. Hu, H. Teng, Influence of structural features on the photocatalytic activity of NaTaO3 powders from different synthesis methods. Appl. Catal. A 331, 44–50 (2007)

    Article  Google Scholar 

  23. S.K. Suzu, K. Teshima, K. Yubuta, S. Ito, Y. Moriya, Direct fabrication and nitridation of a high-quality NaTaO3 crystal layer onto a tantalum substrate. CrystEngComm. 14, 7178–7183 (2012)

    Article  Google Scholar 

  24. H. Husin, H. Chen, W. Su, C. Pan, W. Chuang, H. Sheu, Green fabrication of La-doped NaTaO3 via H2O2 assisted sol–gel route for photocatalytic hydrogen production. Appl. Catal B Environ. 102, 343–351 (2011)

    Article  Google Scholar 

  25. J. Shi, G. Liu, N. Wang, C. Li, Microwave-assisted hydrothermal synthesis of perovskite NaTaO3 nanocrystals and their photocatalytic properties. J. Mater. Chem. 22, 18808–18813 (2012)

    Google Scholar 

  26. K. Reddy, K. Parida, Facile fabrication of Bi2O3/Bi–NaTaO3 photocatalysts for hydrogen generation under visible light irradiation. RSC Adv. 2, 9423–9436 (2012)

    Article  Google Scholar 

  27. D.R. Liu, C.D. Wei, Synthesis and photocatalytic activity of N-doped NaTaO3 compounds calcined at low temperature. J. Hazard. Mater. 182, 50–54 (2010)

    Article  Google Scholar 

  28. X.H. Xia, Y. Liang, Z. Wang, Synthesis and photocatalytic properties of TiO2 nanostructures. Mater. Res. Bull. 43, 2187–2195 (2008)

    Article  Google Scholar 

  29. L.M. Torres-Martínez, A. Cruz-López, I. Juárez-Ramírez, M.E. Meza-de la Rosa, Methylene blue degradation by NaTaO3 sol–gzel doped with Sm and La. J. Hazard. Mater. 165, 774–779 (2009)

    Article  Google Scholar 

  30. O. Vázquez-Cuchillo, A. Manzo-Robledo, Characterization of NaTaO3 synthesized by ultrasonic method. Ultrason. Sonochem. 20, 498–501 (2013)

    Article  Google Scholar 

  31. S. Matthies, J. Pehl, H.R. Wenk, L. Lutterotti, S.C. Vogel, Quantitative texture analysis with the HIPPO TOF diffractometer. J. Appl. Crystallogr. 38, 462–465 (2005)

    Article  Google Scholar 

  32. J.S. Xu, D.F. Xue, C.L. Yan, Chemical synthesis of NaTaO3 powder at low temperature. Mater. Lett. 59, 2920 (2005)

    Article  Google Scholar 

  33. X.F. Zhou, Y. Chen, H. Mei, Z.L. Hu, Y.Q. Fan, A facile route for the preparation of morphology-controlled NaTaO3 films. Appl. Surf. Sci. 255, 2803–2807 (2008)

    Google Scholar 

  34. J.W. Liu, G. Chen, Z.H. Li, Z.G. Zhang, Hydrothermal synthesis and photocatalytic properties of ATaO3 and ANbO3 (A = Na and K). Int. J. Hydrogen Energy 13, 2269–2272 (2007)

    Article  Google Scholar 

  35. H. Kisch, W. Macyk, Visible-light photocatalysis by modified Titania. ChemPhyschem. 3, 399–400 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Project of the National Natural Science Foundation of China (Grant No. 51172135); the Academic Leaders Funding Scheme of Shaanxi University of Science and Technology (2013XSD06); the State-Level College Students’ Innovation and Entrepreneurship Training Program for Local Colleges and Universities (201310708003); the Graduate Innovation Fund of Shaanxi University of Science and Technology (SUST-A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Tan, G., Ren, H. et al. Enhanced photocatalytic of N/F-doped-NaTaO3 photocatalyst synthesized by hydrothermal method. J Mater Sci: Mater Electron 25, 3807–3815 (2014). https://doi.org/10.1007/s10854-014-2093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2093-x

Keywords

Navigation