Skip to main content
Log in

Synthesis of SnO2@SnS2 core–shell nanorods by double crucible method and their photocatalysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnO2@SnS2 core–shell structural nanorods were prepared by the solid phase double crucible method. The structure, morphology and optical properties of the as-prepared samples were characterized by X-ray diffraction, transmission electron microscope and ultraviolet–visible–near-infrared spectrophotometer. The results indicated that the mixture of hexagonal phases SnS2 and tetragonal phase SnO2 was formed at 400 and 500 °C and the molar ratio of SnO2 to thioacetamide was 1:3. SnS2 was uniformly coated on the surface of SnO2 nanorods, and SnO2@SnS2 core–shell nanorods with the shell thickness of about 3–5 nm were obtained. Furthermore, their photocatalytic properties were tested for the degrading of methyl orange in water under visible light (λ > 420 nm) irradiation. Compared with pure SnS2 nanomaterials, the core–shell nanorods demonstrated more superior photocatalytic activity. These meaningful results had laid certain foundation for further research on metal oxide@metal sulfide core–shell structure nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. N. Zhang, Y.H. Zhang, M.Q. Yang, Z.R. Tang, Y.J. Xu, J. Catal. 299, 210 (2013)

    Article  Google Scholar 

  2. T.P. Cao, Y.J. Li, C.H. Wang, C.L. Shao, Y.C. Liu, Langmuir 27, 2946 (2011)

    Article  Google Scholar 

  3. P. Manjula, R. Boppella, S.V. Manorama, ACS Appl. Mater. Interfaces 4, 6252 (2012)

    Article  Google Scholar 

  4. F.T. Li, Y. Zhao, Y.J. Hao, X.J. Wang, R.H. Liu, D.S. Zhao, D.M. Chen, J. Hazard. Mater. 239–240, 118 (2012)

    Article  Google Scholar 

  5. Z.Y. Liu, L.D. Sun, P. Guo, J.O. Leckie, Nano Lett. 7, 1081 (2007)

    Article  Google Scholar 

  6. H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge, S. Ito, J. Phys. Chem. B. 104, 4585 (2000)

    Google Scholar 

  7. H. Tada, Y. Konishi, A. Kokubu, S. Ito, Langmuir 20, 3816 (2004)

    Article  Google Scholar 

  8. P.Q. Li, G.H. Zhao, X. Cui, Y.G. Zhang, Y.T. Ta, J. Phys. Chem. C 113, 2375 (2009)

    Article  Google Scholar 

  9. D. Chen, J. Xu, Z. Xie, G.Z. Shen, ACS Appl. Mater. Interfaces 3, 2112 (2011)

    Article  Google Scholar 

  10. H.L. Xia, H.S. Zhuang, T. Zhang, D.C. Xiao, Mater. Lett. 62, 1126 (2008)

    Article  Google Scholar 

  11. Y.C. Zhang, J. Li, M. Zhang, D.D. Dionysiou, Environ. Sci. Technol. 45, 9324 (2011)

    Article  Google Scholar 

  12. Y.Q. Lei, S.Y. Song, W.Q. Fan, Y. Xing, H.J. Zhang, J. Phys. Chem. C 113, 1280 (2009)

    Article  Google Scholar 

  13. R.J. Wei, J.C. Hu, T.F. Zhou, X.L. Zhou, J.X. Liu, J.L. Li, Acta Mater. 66, 163 (2014)

    Article  Google Scholar 

  14. R. Lucena, F. Fresno, J.C. Conesa, Appl. Catal. A 415–416, 111 (2012)

    Article  Google Scholar 

  15. A. Umar, M.S. Akhtar, G.N. Dar, M. Abaker, A.A. Hajry, S. Baskoutas, Talanta 114, 183 (2013)

    Article  Google Scholar 

  16. Y.C. Zhang, Z.N. Du, K.W. Li, M. Zhang, D.D. Dionysiou, ACS Appl. Mater. Interfaces 3, 1528 (2011)

    Article  Google Scholar 

  17. Y.C. Zhang, Z.N. Du, S.Y. Li, M. Zhang, Appl. Catal. B 95, 153 (2010)

    Article  Google Scholar 

  18. D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci. Mater. Electron. 24, 3041 (2013)

    Google Scholar 

  19. L. Ge, C.C. Han, X.L. Xiao, L.L. Guo, Int. J. Hydrogen Energy 38, 6960 (2013)

    Article  Google Scholar 

  20. X. Xiang, L.S. Xie, Z.W. Li, F. Li, Chem. Eng. J. 221, 222 (2013)

    Article  Google Scholar 

  21. A. Kar, S. Kundu, A. Patra, RSC Adv. 2, 10222 (2012)

    Article  Google Scholar 

  22. K.E. Roelofs, T.P. Brennan, J.C. Dominguez, C.D. Bailie, G.Y. Margulis, E.T. Hoke, M.D. McGehee, S.F. Bent, J. Phys. Chem. C 117, 5584 (2013)

    Article  Google Scholar 

  23. S. Khanchandani, S. Kundu, A. Patra, A.K. Ganguli, J. Phys. Chem. C 116, 23653 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of P.R. China (NSFC) (Grant No. 51072026, 50972020) and the Development of science and technology plan projects of Jilin Province (Grant No. 20130206002GX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guixia Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Luo, Q., Liu, G. et al. Synthesis of SnO2@SnS2 core–shell nanorods by double crucible method and their photocatalysis. J Mater Sci: Mater Electron 25, 3801–3806 (2014). https://doi.org/10.1007/s10854-014-2092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2092-y

Keywords

Navigation