Skip to main content
Log in

Effect of the Pb–Te–B–O system glass frits in the front contact paste on the conversion efficiency of crystalline silicon solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present paper, many monocrystal silicon (Si) solar cells are produced by screen printing a front contact paste prepared with crystalline silver particles, a series of glass frits with the different lead oxide (PbO) contents in Pb–Te–B–O system glass, and an organic medium. Under scanning electron microscopy, the selective etching of cells screen-printed by pastes containing the glass frits of different PbO contents from low to high (37.2–52.5 mol%) reveals the corrosion degree of antireflection coating and the growth of silver crystallite microstructures on Si substrate. When the PbO content is 42.7 mol% in glass frits, the silver crystallites of optimal size were formed to make the conversion efficiency of cells best. By comparing the cross-section microstructures of solar cells, the different transition temperatures (Tg = 283–546 °C) of glass frits are found to have a substantial impact on wetting behavior during the firing cycle. When the glass Tg is medium (Tg = 393 °C), the optimal glass layer will be obtained to derive photoelectrons smoothly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.W. Chen, A. Ebong, J. Renshaw et al., IEEE J. Photovolt. 1(2), 231–235 (2011)

    Article  Google Scholar 

  2. R. Liu, Z. Xia, Y. Wu et al., Chin. Opt. Lett. 11(12), 120501 (2013)

    Article  Google Scholar 

  3. M. Steglich, T. Kasebier, I. Hoger et al., Chin. Opt. Lett. 11(s1), 10502 (2013)

    Google Scholar 

  4. Jung-Ting Tsai, Shun-Tian Lin, J. Alloys Compd. 548, 105–109 (2013)

    Article  Google Scholar 

  5. J.Y. Huh, K.K. Hong, S.B. Cho et al., Mater. Chem. Phys. 131(1), 113–119 (2011)

    Google Scholar 

  6. Sung-BinCho Kyoung-KookHong, Ji-WeonJeong JaeSungYou, Joo-YoulHuh Seung-MookBea, Sol. Energy Mater. Sol. Cells 93, 898–904 (2009)

    Article  Google Scholar 

  7. Yaping Zhang, Yunxia Yang, Jianhua Zheng, Wei Hua, Guorong Chen, Mater. Chem. Phys. 114, 319–322 (2009)

    Google Scholar 

  8. A.S. Ionkin, B.M. Fish, Z.R. Li et al., ACS Appl. Mater. Interfaces 3, 606–611 (2011)

    Article  Google Scholar 

  9. C.H. Lin, S.Y. Tsai, S.P. Hsu et al., Sol. Energy Mater. Sol. Cells 92(9), 1011–1015 (2008)

    Article  Google Scholar 

  10. J. Zhang, Y. Cui, H. Wang, J. Renew. Sustain. Energy 5(2), 023117 (2013)

    Google Scholar 

  11. Quande Che, Hongxing Yang, Lu Lin, Yuanhao Wang, J. Alloys Compd. 549, 221–225 (2013)

    Article  Google Scholar 

  12. Yaping Zhang, Yunxia Yang, Jianhua Zheng, Guorong Chen, Chen Cheng, C.M. James, H. Wang, Boon S. Ooi, Andriy Kovalskiy, Himanshu Jain, Thin Solid Films 518, e111–e113 (2010)

    Article  Google Scholar 

  13. C. Ballif, D.M. Huljić, G. Willeke, A. Hessler-Wyser, Appl. Phys. Lett. 82, 1878 (2003)

    Article  Google Scholar 

  14. E. Cabrera, S. Olibet, J. Glatz-Reichenbach, R. Kopecek, Daniel Reinke, Gunnar Schubert, Energy Procedia 8, 540–545 (2011)

    Article  Google Scholar 

  15. Enrique Cabrera, Sara Olibet, Joachim Glatz-Reichenbach, Radovan Kopecek, Daniel Reinke, Gunnar Schubert, J. Appl. Phys. 110, 114511 (2011)

    Article  Google Scholar 

  16. Z.G. Li, L. Liang, L.K. Cheng, J. Appl. Phys. 105, 066102 (2009)

    Article  Google Scholar 

  17. Z.G. Li, L. Liang, A.S. Ionkin, B.M. Fish, M.E. Lewittes, L.K. Cheng, K.R. Mikeska, J. Appl. Phys. 110, 074304 (2011)

    Article  Google Scholar 

  18. Y.-W. Choi, H. J. Jung, D. Song, E. K. Kim, S. Kim, K. Okamoto, 26th European photovoltaic solar energy conference and exhibition

  19. Gang Wang, Hui Wang, Yanbin Cui, Jintao Bai, J. Mater. Sci. Mater. Electron. 25, 487–494 (2014)

    Google Scholar 

  20. G. Guo, W. Gan, F. Xiang, J. Zhang, H. Zhou, H. Liu, J. Luo, J. Mater. Sci. Mater. Electron. 22, 527 (2011)

    Google Scholar 

  21. M.M. Hilali, S. Sridharan, C. Khadilkar, A. Shaikh, A. Rohatig, S. Kim, J. Electron. Mater. 35, 20417 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Hi-Tech Research and Development Program (863) Key Project of China (No. 2012AA050301-SQ2011GX01D01292), China International Science and Technology Cooperation Special Program (No. 2010DFB60400). Major Science and Technology Innovation Subject Fund of Shaanxi Province (No. 2010ZKC03-14) and Xi’an Industrial Technology Innovation Project-technology transfer promoting program (No. CX1242, CXY1123-5, CX12182-3, CX12182-2). The authors thank the State Key Laboratory of Continental Dynamics for the SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Wang or Jintao Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Tai, Y., Wang, H. et al. Effect of the Pb–Te–B–O system glass frits in the front contact paste on the conversion efficiency of crystalline silicon solar cells. J Mater Sci: Mater Electron 25, 3779–3786 (2014). https://doi.org/10.1007/s10854-014-2089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2089-6

Keywords

Navigation