Skip to main content
Log in

Structure, ferroelectric and piezoelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new lead-free solid solution of (0.75 − x)BiFeO3–0.25BaTiO3xBi0.5(Na0.8K0.2)0.5TiO3 + 1 mol% MnO2 has been prepared by a conventional ceramic technique and the effects of Bi0.5(Na0.8K0.2)0.5TiO3 and sintering temperature on the structure, ferroelectric and piezoelectric properties of the material have been studied. The ceramics sintered at 960 °C for 2 h possess a pure perovskite structure and no second phases can be detected. After the addition of Bi0.5(Na0.8K0.2)0.5TiO3, a morphotropic phase boundary of rhombohedral and orthorhombic phases is formed at x = 0.01. The addition of a small amount of Bi0.5(Na0.8K0.2)0.5TiO3 can promote the grain growth, while excess Bi0.5(Na0.8K0.2)0.5TiO3 causes an inhibition of grain growth. Sintering temperature has an important influence on the structure and electrical properties of the ceramics. The sintering temperature of 960 °C is a critical temperature to obtain the ceramics with good piezoelectric properties. For the ceramic with x = 0.01 sintered at/above 960 °C located at the morphotropic phase boundary, large grains, good densification, high resistivity and enhanced electrical properties are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971)

    Google Scholar 

  2. F. Gao, R. Hong, J. Liu, Z. Li, L. Cheng, C. Tian, J. Alloys Compd. 475, 619 (2009)

    Article  Google Scholar 

  3. F. Gao, R. Hong, J. Liu, J. Am. Ceram. Soc. 29, 1687 (2009)

    Google Scholar 

  4. J.M. Moreau, C. Michel, R. Gerson, W.J. James, J. Phys. Chem. Solids 32, 1315 (1971)

    Google Scholar 

  5. G.A. Smolenskii, I.E. Chupis, Sov. Phys. Usp. 25, 475 (1982)

    Article  Google Scholar 

  6. S.K. Pradhan, B.K. Roul, Phys. B 406, 3313 (2011)

    Article  Google Scholar 

  7. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2008)

    Article  Google Scholar 

  8. Q. Zhang, X.H. Zhu, Y.H. Xu, H.B. Gao, Y.J. Xiao, D.Y. Liang, J.L. Zhu, J.G. Zhu, D.Q. Xiao, J. Alloys Compd. 546, 57 (2013)

    Article  Google Scholar 

  9. S. Pattanayak, R.N.P. Choudhary, S.R. Shannigrahi, P.R. Das, R. Padhee, J. Magn. Magn. Mater. 341, 158 (2013)

    Article  Google Scholar 

  10. X.M. Chen, J.L. Wang, G.L. Yuan, D. Wu, J.M. Liu, J. Yin, Z.G. Liu, J. Alloys Compd. 541, 173 (2012)

    Article  Google Scholar 

  11. W. Dong, Y.P. Guo, B. Guo, H.Y. Liu, H. Li, H.Z. Liu, Mater. Lett. 91, 359 (2013)

    Article  Google Scholar 

  12. F. Roulland, C. Lefevre, A. Thomasson, N. Viart, J. Eur. Ceram. Soc. 33, 1029 (2013)

  13. X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014)

    Article  Google Scholar 

  14. H.L. Zhang, W. Jo, K. Wang, K.G. Webber, Ceram. Int. 40, 4759 (2014)

    Article  Google Scholar 

  15. C.Y. Shi, X.Z. Liu, Y.M. Hao, Z.B. Hu, Solid State Sci. 13, 1885 (2011)

    Article  Google Scholar 

  16. T.H. Wang, C.S. Tu, Y. Ding, T.C. Lin, C.S. Ku, W.C. Yang, H.H. Yu, K.T. Wu, Y.D. Yao, H.Y. Lee, Curr. Appl. Phys. 11, S240 (2011)

    Article  Google Scholar 

  17. Y.X. Wei, X.T. Wang, J.T. Zhu, X.L. Wang, J.J. Jia, J. Am. Ceram. Soc. 96, 1 (2013)

    Article  Google Scholar 

  18. S. Chandarak, J. Jutimoosik, A. Bootchanont, M. Unruan, P. Jantaratana, S. Priya, S. Srilomsak, S. Rujirawat, R. Yimnirun, J. Supercond. Novel Magn. 26, 455 (2013)

    Article  Google Scholar 

  19. Q.Q. Wang, Z. Wang, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 95, 670 (2012)

    Article  Google Scholar 

  20. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Solid State Sci. 13, 2196 (2011)

    Article  Google Scholar 

  21. H.Y. Liu, Y.P. Guo, B. Guo, W. Dong, D. Zhang, J. Eur. Ceram. Soc. 32, 4335 (2012)

    Article  Google Scholar 

  22. S.X. Huo, S.L. Yuan, Y. Qiu, Z.Z. Ma, C.H. Wang, Mater. Lett. 68, 8 (2012)

    Article  Google Scholar 

  23. Y.J. Lee, J.S. Kim, S.H. Han, H.W. Kang, H.G. Lee, J. Kor, Phys. Soc. 61, 947 (2012)

    Google Scholar 

  24. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)

    Article  Google Scholar 

  25. W. Zhao, H.P. Zhou, Y.K. Yan, Mater. Lett. 62, 1219 (2008)

    Article  Google Scholar 

  26. X.P. Jiang, L.Z. Li, M. Zeng, H.L.W. Chan, Mater. Lett. 60, 1786 (2006)

    Article  Google Scholar 

  27. S.B. Lee, T.S. Key, Z. Liang, R.E. Garcia, S. Wang, X. Tricoche, G.S. Rohrer, Y. Saito, C. Ito, T. Tani, J. Eur. Ceram. Soc. 33, 313 (2013)

    Article  Google Scholar 

  28. M. Izumi, K. Yamamoto, M. Suzuki, Y. Noguchi, M. Miyayama, Appl. Phys. Lett. 93, 242903 (2008)

    Article  Google Scholar 

  29. J. Pharatree, W. Anucha, J. Sukanda, J. Appl. Phys. 114, 027005 (2013)

    Article  Google Scholar 

  30. S.T. Zhang, B. Yang, W.W. Cao, Acta Mater. 60, 469 (2012)

    Article  Google Scholar 

  31. Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys., Part 1 44, 5040 (2005)

  32. M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1968)

    Article  Google Scholar 

  33. L. Lutterotti, MAUD, CPD NEWSLETTER, (IUCr) No. 24, Dec 2000

  34. G. Arlt, N.A. Pertsev, J. Appl. Phys. 70, 2283 (1991)

    Article  Google Scholar 

  35. Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75, 454 (1994)

    Article  Google Scholar 

  36. T.M. Kamel, G. de With, J. Eur. Ceram. Soc. 28, 851 (2008)

    Article  Google Scholar 

  37. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  Google Scholar 

  38. M. Mahesh Kumar, V.R. Palkar, K. Srinvivas, Appl. Phys. Lett. 76, 2764 (2000)

    Article  Google Scholar 

  39. Y. Chishima, Y. Noguchi, Y. Kitanaka, M. Miyayama, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2233 (2010)

    Article  Google Scholar 

  40. T. Kawae, Y. Terauchi, H. Tsuda, M. Kumeda, A. Morimoto, Appl. Phys. Lett. 94, 112904 (2009)

    Article  Google Scholar 

  41. H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, H. Wang, W.Z. Li, Mater. Res. Bull. 47, 4233 (2012)

    Article  Google Scholar 

  42. J.G. Hao, W.F. Bai, W. Li, J.W. Zhai, J. Am. Ceram. Soc. 95, 1998 (2012)

    Article  Google Scholar 

  43. S.X. Huo, S.L. Yuan, Z.M. Tian, C.H. Wang, Y. Qiu, J. Am. Ceram. Soc. 95, 1383 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects of Education Department of Sichuan Province (11ZA104), Science and Technology Bureau of Sichuan Province (2010JQ0046) and the Open Project of State Key Laboratory of Electronic Thin Films and Integrated Devices of University of Electronic Science and Technology of China (KFJJ201108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunmin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Xiao, P., Luo, L. et al. Structure, ferroelectric and piezoelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics. J Mater Sci: Mater Electron 25, 3753–3761 (2014). https://doi.org/10.1007/s10854-014-2086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2086-9

Keywords

Navigation