Skip to main content
Log in

High crystallinity oligo(3-methylthiophenes) for p-channel organic field-effect transistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new type of oligo(3-methylthiophenes) with highly regiosymmetric chemical structure was presented for developing high performance and solution-processable organic field-effect transistors (OFETs). The representative molecule Br4MT, tetramer of the oligo(3-methylthiophenes), was synthesized through the oxidative cross-coupling reactions using Cu(II)-catalyst and fully characterized. The Br4MT exhibited remarkably high crystallinity and great ionization potential due to its unique molecular structure, evidenced by differential scanning calorimetry, electrochemical and X-ray diffraction studies. The solution-processed OFETs based on Br4MT achieved high hole mobility of up to 0.24 cm2/V/s with reasonable ambient stability, suggesting that the Br4MT had great potential for application in low-cost OFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Kumar, B.K. Kaushik, Y.S. Negi, J. Mater. Sci. Mater. Electron. 25, 1 (2014)

    Google Scholar 

  2. C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 112, 2208 (2011)

    Article  Google Scholar 

  3. H. Sirringhaus, Adv. Mater. 26, 1319 (2014)

    Article  Google Scholar 

  4. H. De Santana, E.C.R. Maia, D.C. Bento, T.N.M. Cervantes, G.J. Moore, J. Mater. Sci. Mater. Electron. 24, 3352 (2013)

    Google Scholar 

  5. B.S. Ong, Y. Wu, P. Liu, S. Gardner, J. Am. Chem. Soc. 126, 3378 (2004)

    Article  Google Scholar 

  6. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M.L. Chabinyc, R. Joseph Kline, M.D. Mcgehee, M.F. Toney, Nat. Mater. 5, 328 (2006)

    Google Scholar 

  7. W. Wu, Y. Liu, D. Zhu, Chem. Soc. Rev. 39, 1489 (2010)

    Article  Google Scholar 

  8. J. Mei, Y. Diao, A.L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc. 135, 6724 (2013)

    Article  Google Scholar 

  9. Z. Cai, Y. Guo, S. Yang, Q. Peng, H. Luo, Z. Liu, G. Zhang, Y. Liu, D. Zhang, Chem. Mater. 25, 471 (2013)

    Article  Google Scholar 

  10. S. Allard, M. Forster, B. Souharce, H. Thiem, U. Scherf, Angew. Chem. Int. Ed. 47, 4070 (2008)

    Article  Google Scholar 

  11. X. Guo, R. Ponce Ortiz, Y. Zheng, Y. Hu, Y.Y. Noh, K.J. Baeg, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 133, 1405 (2011)

    Article  Google Scholar 

  12. F. Liscio, C. Albonetti, K. Broch, A. Shehu, S. David Quiroga, L. Ferlauto, C. Frank, S. Kowarik, R. Nervo, A. Gerlach, S. Milita, F. Schreiber, F. Biscarini, ACS Nano 7, 1257 (2013)

    Article  Google Scholar 

  13. V. Podzorov, S.E. Sysoev, E. Loginova, V.M. Pudalov, M.E. Gershenson, Appl. Phys. Lett. 83, 3504 (2003)

    Article  Google Scholar 

  14. C.D. Dimitrakopoulos, A.R. Brown, A. Pomp, J. Appl. Phys. 80, 2501 (1996)

    Article  Google Scholar 

  15. Y. Yamashita, Sci. Technol. Adv. Mater. 10, 024313 (2009)

    Article  Google Scholar 

  16. A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, A. Salleo, Chem. Rev. 110, 3 (2010)

    Article  Google Scholar 

  17. X. Gao, C. Di, Y. Hu, X. Yang, H. Fan, F. Zhang, Y. Liu, H. Li, D. Zhu, J. Am. Chem. Soc. 132, 3697 (2010)

    Article  Google Scholar 

  18. L. Zhang, N.S. Colella, F. Liu, S. Trahan, L.K. Baral, H.H. Winter, S.C.B. Mannsfeld, A.L. Briseno, J. Am. Chem. Soc. 135, 844 (2013)

    Article  Google Scholar 

  19. M. Mas-Torrent, C. Rovira, Chem. Soc. Rev. 37, 827 (2008)

    Article  Google Scholar 

  20. M. Schnürch, M. Spina, A. Farooq Khan, M.D. Mihovilovic, P. Stanetty, Chem. Soc. Rev. 36, 1046 (2007)

    Article  Google Scholar 

  21. R. Azumi, G. Götz, T. Debaerdemaeker, P. Bäuerle, Chem. Eur. J. 6, 735 (2000)

    Article  Google Scholar 

  22. A. Kreyes, S. Ellinger, K. Landfester, M. Defaux, D.A. Ivanov, A. Elschner, T. Meyer-Friedrichsen, Chem. Mater. 22, 2079 (2010)

    Article  Google Scholar 

  23. B.A. Jones, A. Facchetti, M.R. Wasielewski, T.J. Marks, J. Am. Chem. Soc. 129, 15259 (2007)

    Article  Google Scholar 

  24. J.H. Choi, K.I. Son, T. Kim, K. Kim, K. Ohkubo, S. Fukuzumi, J. Mater. Chem. 20, 475 (2010)

    Google Scholar 

  25. C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Adv. Funct. Mater. 11, 15 (2001)

    Article  Google Scholar 

  26. V. Coropceanu, J. Cornil, D.A. SilvaFilho, Y. Olivier, R. Silbey, J.L. Brédas, Chem. Rev. 107, 926 (2007)

    Article  Google Scholar 

  27. T.J. Prosa, M.J. Winokur, R.D. McCullough, Macromolecules 29, 365 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the financial support from National Natural Science Foundation of China (NSFC Grant No. 21174009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Huang, P. & Liu, C. High crystallinity oligo(3-methylthiophenes) for p-channel organic field-effect transistors. J Mater Sci: Mater Electron 25, 3727–3732 (2014). https://doi.org/10.1007/s10854-014-2082-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2082-0

Keywords

Navigation