Skip to main content

Advertisement

Log in

Effects of Na-doping on the efficiency of ZnO nanorods-based dye sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Na-doped ZnO nanorods (Zn1−xNaxO: x = 0.0, 0.02, 0.04) were grown by a chemical bath deposition method on ZnO seeded FTO substrates. The influence of Na-doping on the efficiency of ZnO nanorods-based dye-sensitized solar cells (DSSCs) was investigated. Undoped and Na-doped ZnO nanorods were used as photo-anodes for the fabricated DSSCs. X-ray diffraction measurements exhibited that all the samples had a wurtzite structure of ZnO with a preferred orientation of (002) plane. Scanning electron microscopy images of the samples revealed that all the samples displayed hexagonal shaped nanorods. It was observed from optical measurements that the band gap energy gradually decreased from 3.29 to 3.21 eV for undoped and 4 at.% Na-doped ZnO nanorods, respectively. Photoluminescence spectrum for undoped ZnO showed three peaks located at 379, 422, and 585 nm corresponding to UV emission, zinc vacancy, and deep level emission (DLE) peaks, respectively. When ZnO nanorods were doped with 2 at.% Na, the intensity of UV peak increased whereas the intensity of DLE peak decreased. The maximum conversion efficiency of DSSCs was found to be 0.22 % with a Jsc of 0.80 mA/cm2, Voc of 0.49 V, and fill factor of 0.523 as ZnO nanorods were doped with 2 at.% Na atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. M. Gräzel, J. Photochem. Photobiol. C 4, 145 (2003)

    Article  Google Scholar 

  3. A.G. Martin, E. Keith, H. Yoshihiro, W. Wilhelm, Prog. Photovolt. 17, 320 (2009)

    Article  Google Scholar 

  4. J.-K. Lee, B.-H. Jeong, S.-I. Jang, Y.-S. Yeo, S.-H. Park, J.-U. Kim, Y.-G. Kim, Y.-W. Jang, M.-R. Kim, J. Mater. Sci. Mater. Electron. 20, S446 (2009)

    Google Scholar 

  5. I. Gonzalez-Valls, M. Lira-Cantu, Energy Environ. Sci. 3, 789 (2010)

    Article  Google Scholar 

  6. S. Pang, T. Xie, Y. Zhang, X. Wei, M. Yang, D. Wang, Z. Du, J. Phys. Chem. C. 111, 18417 (2007)

    Article  Google Scholar 

  7. A. Umar, M.S. Akhtar, S.H. Kim, A. Al-Hajry, M.S. Chauhan, S. Chauhan, Sci. Adv. Mater. 3, 695 (2011)

    Article  Google Scholar 

  8. Y. Meng, Y. Lin, Y. Lin, G. Liu, X. Zhang, J. Mater. Sci. Mater. Electron. 25, 1072 (2014)

    Google Scholar 

  9. S. Yun, J. Lee, J. Chung, S. Lim, J. Phys. Chem. Solids 71, 1724 (2010)

    Google Scholar 

  10. H.S. Yang, J.G. Lee, J.H. Kim, Y.S. Han, B.Y. Shin, D.K. Lee, Mol. Cryst. Liq. Cryst. 581, 116 (2013)

    Article  Google Scholar 

  11. M. Saito, S. Fujihara, Energy Environ. Sci. 1, 280 (2008)

    Article  Google Scholar 

  12. P. Guo, M.A. Aegerter, Thin Solid Films 351, 290 (1999)

    Article  Google Scholar 

  13. A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science 334, 629 (2011)

    Article  Google Scholar 

  14. S.S. Lin, J.L. Huang, D.F. Lii, Mater. Chem. Phys. 90, 22 (2005)

    Google Scholar 

  15. D. Song, A.G. Aberle, J. Xia, Appl. Surf. Sci. 195, 291 (2002)

    Google Scholar 

  16. F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q. Meng, J. Li, Q. Li, Y. Wang, T. Wang, B. Zou, Mater. Lett. 61, 2000 (2007)

    Article  Google Scholar 

  17. A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, Nano Lett. 7, 2183 (2007)

    Article  Google Scholar 

  18. D.K. Hwang, M.C. Jeong, J.M. Myoung, Appl. Surf. Sci. 225, 217 (2004)

    Google Scholar 

  19. K.H. Zheng, Z. Liu, J. Liu, L.J. Hu, D.W. Wang, C.Y. Chen, L.F. Sun, Chin. Phys. B 19, 026101 (2010)

    Article  Google Scholar 

  20. Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M.W. Cho, T. Yao, A. Setiawan, J. Appl. Phys. 98, 054911 (2005)

    Article  Google Scholar 

  21. I. Polat, S. Aksu, M. Altunbas, S. Yılmaz, E. Bacaksız, J. Solid State Chem. 184, 2683 (2011)

    Article  Google Scholar 

  22. R. Chandramohana, T.A. Vijayan, S. Arumugam, H.B. Ramalingam, V. Dhanasekaran, K. Sundaram, T. Mahalingam, Mater. Sci. Eng. B 176, 152 (2011)

    Article  Google Scholar 

  23. J. Lv, K. Huang, X. Chen, J. Zhu, C. Cao, X. Song, Z. Sun, Opt. Commun. 284, 2905 (2011)

    Article  Google Scholar 

  24. J. Lang, Q. Han, C. Li, J. Yang, X. Li, L. Yang, D. Wang, H. Zhai, M. Gao, Y. Zhang, X. Liu, M. Wei, Appl. Surf. Sci. 256, 3365 (2010)

    Google Scholar 

  25. K. Yoshino, M. Oshima, Y. Takemoto, S. Oyama, M. Yoneta, Phys. Status Solidi C 6, 1120 (2009)

    Article  Google Scholar 

  26. U. Alver, T. Kılınc, E. Bacaksız, S. Nezir, Mater. Chem. Phys. 106, 227 (2007)

    Google Scholar 

  27. S.S. Cetin, I. Uslu, A. Aytimur, S. Ozcelik, Ceram. Int. 38, 4201 (2012)

    Article  Google Scholar 

  28. S. Ilıca, J. Alloy. Compd. 553, 225 (2013)

    Article  Google Scholar 

  29. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Status Solidi B 241, 231 (2004)

    Article  Google Scholar 

  30. S. Yılmaz, I. Polat, Y. Atasoy, E. Bacaksız, J. Mater. Sci. Mater. Electron. 25, 1810 (2014)

    Google Scholar 

  31. D. Li, D.K. Li, H.Z. Wu, F. Liang, W. Xie, C.W. Zou, L.X. Shao, J. Alloy. Compd. 591, 80 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

İ.P. is very grateful to Dr. M. Tomakin (Recep Tayyip Erdoğan University) for conducting XRD and SEM measurements of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Polat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, İ. Effects of Na-doping on the efficiency of ZnO nanorods-based dye sensitized solar cells. J Mater Sci: Mater Electron 25, 3721–3726 (2014). https://doi.org/10.1007/s10854-014-2081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2081-1

Keywords

Navigation