Enhanced ferroelectric and dielectric properties of the P(VDF-TrFE)/Ag nanoparticles composite thin films

Abstract

The scope of the present work was the synthesis of homogeneously dispersed silver (Ag) nanoparticles (NPs) in P(VDF-TrFE) polymer by N,N-dimethylformamide’s reducing reaction on silver nitrate and the study on the surface micromorphology, crystalline phases, electrical and optical properties of the P(VDF-TrFE)/Ag NPs composite thin films. The results demonstrate that incorporating appropriate concentration of Ag NPs improve the ferroelectric and dielectric properties with an increase of 38 % in the remanent polarization and 47 % in dielectric constant respectively compared with the pristine P(VDF-TrFE) films. The reasons for the improved properties are explained by the effective compensation to the bounding charges provided by the appropriate amount of the Ag NPs fillers and Ag NPs’ acting as micro capacitors in P(VDF-TrFE) matrix. Furthermore, the surface plasmon resonance absorption in the composite films thin films is observed at the wavelength of ~415 nm, whose intensity is dependent on the density of the Ag NPs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    T. Furukawa, Phase Transit. 18, 143–211 (1989)

    Article  Google Scholar 

  2. 2.

    C. Huang, R. Klein, F. Xia, H.F. Li, Q.M. Zhang, IEEE Trans. Dielectr. Electr. Insul. 11, 299–311 (2004)

    Article  Google Scholar 

  3. 3.

    X.J. Meng, H. Kliem, T. Lin, J.H. Chu, Appl. Phys. Lett. 91, 102903 (2007)

    Article  Google Scholar 

  4. 4.

    J.L. Wang, X.J. Meng, S.Z. Yuan, J. Yang, J.L. Sun, H.S. Xu, J.H. Chu, Appl. Phys. Lett. 93, 192905 (2008)

    Article  Google Scholar 

  5. 5.

    A.J. Lovinger, Science 220, 1115–1121 (1983)

    Article  Google Scholar 

  6. 6.

    T. Furukawa, Adv. Colloid Interface 71–72, 183–208 (1997)

    Article  Google Scholar 

  7. 7.

    X.J. He, K. Yao, B.K. Gan, J. Appl. Phys. 97, 084101 (2005)

    Article  Google Scholar 

  8. 8.

    M. Wegener, Rev. Sci. Instrum. 79, 106103 (2008)

    Article  Google Scholar 

  9. 9.

    H.G. Kassa, R.G. Cai, A. Marrani, B. Nysten, Z.J. Hu, A.M. Jonas, Macromolecules 46, 8569–8579 (2013)

    Article  Google Scholar 

  10. 10.

    V.S. Bystrov, Phys. B 432, 21–25 (2014)

    Article  Google Scholar 

  11. 11.

    C.C. Li, S.J. Chang, J.T. Lee, W.S. Liao, Colloid Surf. A. 361, 143–149 (2010)

    Article  Google Scholar 

  12. 12.

    S.L. Jiang, Y. Yu, Y.K. Zeng, Curr. Appl. Phys. 9, 956–959 (2009)

    Article  Google Scholar 

  13. 13.

    D. Bhadra, M.G. Masud, S. Sarkar, J. Sannigrahi, S.K. De, B.K. Chaudhuri, J. Polym. Sci. Polym. Phys. 50, 572–579 (2012)

    Article  Google Scholar 

  14. 14.

    A.C. Lopes, S.A.C. Carabineiro, M.F.R. Pereira, G. Botelho, S. Lanceros-Mendez, ChemPhysChem 14, 1926–1933 (2013)

    Article  Google Scholar 

  15. 15.

    T. Greco, F. Wang, M. Wegener, Ferroelectrics 405, 85–91 (2010)

    Article  Google Scholar 

  16. 16.

    G.V. Ramesh, S. Porel, T.P. Radhakrishnan, Chem. Soc. Rev. 38, 2646–2656 (2009)

    Article  Google Scholar 

  17. 17.

    D.W. Chae, S.S. Hwang, S.M. Hong, S.P. Hong, B.G. Cho, B.C. Kim, Mol. Cryst. Liq. Cryst. 464, 233–241 (2007)

    Article  Google Scholar 

  18. 18.

    D. Miranda, V. Sencadas, A. Sánchez-Iglesias, I. Pastoriza-Santos, L.M. Liz-Marzán, J.L. Gómez Ribelles, S. Lanceros-Mendez, J. Nanosci. Nanotechnol. 9, 1–7 (2008)

    Google Scholar 

  19. 19.

    D.Y. Kusuma, C.A. Nguyen, P.S. Lee, J. Phys. Chem. B 114, 13289–13293 (2010)

    Article  Google Scholar 

  20. 20.

    D. J. Chen, T. Sharma, Y. Q. Chen, X. Fu, J.X.J. Zhang, Gold nanoparticles doped flexible PVDF-TrFE energy harvester, in 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS), pp. 669–672, Suzhou, Peoples Republic of China, 07–10 Apr 2013

  21. 21.

    R. Su, G.J. Zhong, Q. Fu, L.F. Zhang, H. Fong, L. Zhu, J. Mater. Res. 27, 1389–1398 (2012)

    Article  Google Scholar 

  22. 22.

    I. Stolichnov, P. Maksymovych, E. Mikheev, S.V. Kalinin, A.K. Tagantsev, N. Setter, Phys. Rev. Lett. 108, 027603 (2012)

    Article  Google Scholar 

  23. 23.

    Y.F. Ruan, L. Jiang, J.L. Wang, J.L. Sun, A.Y. Liu, X.J. Meng, J. Infrared. Millim. W. 32, 18–22 (2013)

    Google Scholar 

  24. 24.

    H.R. Li, M. Jiang, L.J. Dong, H.A. Xie, C.X. Xiong, J. Macromol. Sci. B 52, 1073–1081 (2013)

    Article  Google Scholar 

  25. 25.

    H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, F. Faupel, Nanotechnology 17, 3499–3505 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Major State Basic Research Development Program (Grant No. 2013CB922302) and the Natural Science Foundation of China (Grant Nos. 11074264, 11104300).

Author information

Affiliations

Authors

Corresponding author

Correspondence to X. J. Meng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zou, Y.H., Han, L., Yuan, G.L. et al. Enhanced ferroelectric and dielectric properties of the P(VDF-TrFE)/Ag nanoparticles composite thin films. J Mater Sci: Mater Electron 25, 3461–3465 (2014). https://doi.org/10.1007/s10854-014-2039-3

Download citation

Keywords

  • Composite Film
  • Methyl Ethyl Ketone
  • Remanent Polarization
  • Methyl Ethyl Ketone
  • Composite Thin Film