Skip to main content

Synthesis and fabrication of Mg-doped ZnO-based dye-synthesized solar cells

An Erratum to this article was published on 18 July 2014

Abstract

Undoped and 2, 4 and 6 at.% Mg-doped ZnO nanorods were successfully deposited on ZnO seeded fluorine tin oxide substrates by a simple chemical bath deposition technique to form a photoanode. It was seen that all the samples had a hexagonal wurtzite structure with compact rod morphology. From Tauc’s plot results, as compared to the undoped one (3.26 eV), the optical band gap of the ZnO:Mg samples increased to 3.32 eV for 4 at.% Mg-doping concentration and then decreased to 3.27 eV for 6 at.% Mg-doping. Photoluminescence results measured at 300 K indicated that ZnO nanorods had a ultra-violet peak with a wavelength of 382 nm, a blue peak at 420 nm and a deep level band in the range of 450–800 nm. Undoped and Mg-doped ZnO nanorods were subsequently used to realize ZnO-based dye-synthesized solar cells which exhibited the best power conversion efficiency of 0.144 % for 4 at.% ZnO:Mg sample.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. E. Kaidashev, M. Lorenz, H. Von Wenckstern, A. Rahm, H.C. Semmelhack, K.H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003)

    Article  Google Scholar 

  2. A. Solbrand, K. Keis, S. Södergren, H. Lindström, S.-E. Lindquist, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 60, 181 (2000)

    Article  Google Scholar 

  3. X.W. Sun, J.Z. Huang, J.X. Wang, Z. Xu, Nano Lett. 8, 1219 (2008)

    Article  Google Scholar 

  4. S. Yılmaz, E. Bacaksız, I. Polat, Y. Atasoy, Curr. Appl. Phys. 12, 1326 (2012)

    Article  Google Scholar 

  5. Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Appl. Phys. Lett. 81, 3046 (2002)

    Article  Google Scholar 

  6. S. Kim, M.C. Jeong, B.Y. Oh, W. Lee, J.M. Myoung, J. Cryst. Growth 290, 485 (2006)

    Article  Google Scholar 

  7. Y. Sun, G.M. Fuge, M.N.R. Ashfold, Chem. Phys. Lett. 396, 21 (2004)

    Article  Google Scholar 

  8. L. Vayssieres, Adv. Mater. 15, 464 (2003)

    Article  Google Scholar 

  9. K. Mahmood, H.W. Kang, S.B. Park, H.J. Sung, ACS Appl. Mater. Interfaces 5, 3075 (2013)

    Article  Google Scholar 

  10. J. Deng, M. Wang, J. Liu, X. Song, Z. Yang, J. Colloid Interface Sci. 418, 277 (2014)

    Article  Google Scholar 

  11. A.S. Gonçalves, M.S. Goes, F. Fabregat-Santiago, T. Moehl, M.R. Davolos, J. Bisquert, S. Yanagida, A.F. Nogueira, P.R. Bueno, Electrochim. Acta 56, 6503 (2011)

    Article  Google Scholar 

  12. H. Wang, R. Bhattacharjee, I.-M. Hung, L. Li, R. Zeng, Electrochim. Acta 111, 797 (2013)

    Article  Google Scholar 

  13. A. Tubtimtae, M.-W. Lee, Superlattices Microstruct. 52, 987 (2012)

    Article  Google Scholar 

  14. C.J. Raj, K. Prabakar, S.N. Karthick, K.V. Hemalatha, M.-K. Son, H.-J. Kim, J. Phys. Chem. C 117, 2600 (2013)

    Article  Google Scholar 

  15. S. Yılmaz, J. Supercond. Nov. Magn. 27, 1083 (2014)

    Article  Google Scholar 

  16. T.-H. Fang, S.-H. Kang, J. Alloys Compd. 492, 536 (2010)

    Article  Google Scholar 

  17. H. Benzarouk, A. Drici, M. Mekhnache, A. Amara, M. Guerioune, J.C. Bernede, H. Bendjffal, Superlattices Microstruct. 52, 594 (2012)

    Article  Google Scholar 

  18. C.C. Wu, D.S. Wuu, P.R. Lin, T.N. Chen, R.H. Horng, S.L. Ou, Y.L. Tu, C.C. Wei, Z.C. Feng, Thin Solid Films 519, 1966 (2011)

    Article  Google Scholar 

  19. S. Gowrishankar, L. Balakrishnan, N. Gopalakrishnan, Ceram. Int. 40, 2135 (2014)

    Article  Google Scholar 

  20. H. Chen, J. Ding, S. Ma, Phys. E 42, 1487 (2010)

    Article  Google Scholar 

  21. D.C. Reynolds, D.C. Look, B. Jobai, C.W. Litton, T.C. Collins, W. Harsch, G. Cantwell, Phys. Rev. B Condens. Matter 57, 12151 (1998)

    Article  Google Scholar 

  22. S. Yılmaz, E. McGlynn, E. Bacaksız, J. Cullen, R.K. Chellappan, Chem. Phys. Lett. 525–526, 72 (2012)

    Article  Google Scholar 

  23. S. Yılmaz, S. Garry, E. McGlynn, E. Bacaksız, Ceram. Int. 40, 7753 (2014)

    Article  Google Scholar 

  24. S. Yılmaz, İ. Polat, Y. Atasoy, E. Bacaksız, J. Mater. Sci.: Mater. Electron. 25, 1810 (2014)

    Google Scholar 

  25. Y.-J. Lin, P.-H. Wu, C.-L. Tsai, C.-J. Liu, Z.-R. Lin, H.-C. Chang, C.-T. Lee, J. Appl. Phys. 103, 113709 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İ. Polat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polat, İ., Yılmaz, S., Bacaksız, E. et al. Synthesis and fabrication of Mg-doped ZnO-based dye-synthesized solar cells. J Mater Sci: Mater Electron 25, 3173–3178 (2014). https://doi.org/10.1007/s10854-014-2000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2000-5

Keywords

  • Power Conversion Efficiency
  • Chemical Bath Deposition
  • Deep Level Emission
  • Chemical Bath Deposition Method
  • Deep Level Emission Peak