Advertisement

Organic acid precursor synthesis and environmental photocatalysis applications of mesoporous anatase TiO2 doped with different transition metal ions

  • A. E. ShalanEmail author
  • M. Rasly
  • M. M. Rashad
Article

Abstract

Mn2+ and Co2+ ions doped titania (TiO2) nanopowders were synthesized using organic acid precursor route for the first time. The results revealed that TiO2 with metal dopants were reduced grain size and increased the surface area of TiO2. The band gap energy values of doped TiO2 were higher than the pure TiO2 and show a blue shift. The photocatalytic performance of TiO2 in the degradation of the rhodamine B dye was tested. Moreover, the efficiency was enhanced by adding Mn and Co to TiO2.

Keywords

TiO2 Photocatalytic Activity TiO2 Nanoparticles Pure TiO2 Undoped TiO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  2. 2.
    M.M. Rashad, E.M. Elsayed, M.S. Al-Kotb, A.E. Shalan, J. Alloys Compd. 581, 71–78 (2013)CrossRefGoogle Scholar
  3. 3.
    A.E. Shalan, M.M. Rashad, Y. Yu, M. Lira-Cantu, M.S.A. Abdel-Mottaleb, Electrochim. Acta. 89, 469–478 (2013)CrossRefGoogle Scholar
  4. 4.
    M.M. Rashad, A.E. Shalan, M. Lira-Cantú, M.S.A. Abdel-Mottaleb, Appl. Nanosci. 3, 167 (2013)CrossRefGoogle Scholar
  5. 5.
    Y.G. Guo, Y.S. Hu, W. Sigle, J. Maier, Adv. Mater. 19, 2087–2091 (2007)CrossRefGoogle Scholar
  6. 6.
    T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, J. Am. Chem. Soc. 131, 1802 (2009)CrossRefGoogle Scholar
  7. 7.
    E.A. Rozhkova, I. Ulasov, B. Lai, N.M. Dimitrijevic, M.S. Lesniak, T. Rajh, Nano Lett. 9, 3337–3342 (2009)CrossRefGoogle Scholar
  8. 8.
    A.E. Shalan, M.M. Rashad, Y. Yu, M. Lira-Cantú, M.S.A. Abdel-Mottaleb, Appl Phys A 110, 111–122 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C Photochem. Rev. 1, 1–21 (2000)Google Scholar
  10. 10.
    A.E. Shalan, I. Osama, M.M. Rashad, I.A. Ibrahim, J. Mater. Sci. Mater. Electron. 25, 303–310 (2014)CrossRefGoogle Scholar
  11. 11.
    A.E. Shalan, M.M. Rashad, Appl. Surf. Sci. 283, 975–981 (2013)CrossRefGoogle Scholar
  12. 12.
    Q. Xiao, L.L. Ouyang, Chem. Eng. J. 148, 248–253 (2009)CrossRefGoogle Scholar
  13. 13.
    W.C. Hung, Y.C. Chen, H. Chu, T.K. Tseng, Appl. Surf. Sci. 255, 2205–2213 (2008)CrossRefGoogle Scholar
  14. 14.
    M.A. Barakat, H. Schaeffer, G. Hayes, S. Ismat-Shah, Appl. Catal. B Environ. 57, 23 (2005)CrossRefGoogle Scholar
  15. 15.
    N.N. Hai, N.T. Khoi, P.V. Vinh, J. Phys. Conf. Ser. 187, 012071 (2009)CrossRefGoogle Scholar
  16. 16.
    X. Xue, W. Ji, Z. Mao, Z. Li, Z. Guo, B. Zhao, C. Zhao, Chem. Res. Chin. Univ. 29, 751–754 (2013)Google Scholar
  17. 17.
    L.G. Devi, S.G. Kumar, B.N. Murthy, N. Kottam, Catal. Commun. 10, 794–798 (2009)CrossRefGoogle Scholar
  18. 18.
    X.Y. Li, S.X. Wu, L.M. Xu, Y.J. Liu, X.J. Xing, S.W. Li, J. Appl. Phys. 104, 093914 (2008)CrossRefGoogle Scholar
  19. 19.
    Y. Hu, X. Zhang, C.H. Wei, Mater. Sci. Forum. 620–622, 683–686 (2009)CrossRefGoogle Scholar
  20. 20.
    Q.R. Deng, X.H. Xia, M.L. Guo, Y. Gao, G. Shao, Mater. Lett. 65, 2051–2054 (2011)CrossRefGoogle Scholar
  21. 21.
    H. Li, D. Wang, H. Fan, T. Jiang, X. Li, T. Xie, Nano Res. 4, 460–469 (2011)CrossRefGoogle Scholar
  22. 22.
    M.M. Rashad, A.E. Shalan, M. Lira-Cantu, M.S.A. Abdel-Mottaleb, J. Ind. Eng. Chem. 19, 2052–2059 (2013)CrossRefGoogle Scholar
  23. 23.
    M.M. Rashad, A.E. Shalan, Int. J. Nanoparticles 5, 159–169 (2012)CrossRefGoogle Scholar
  24. 24.
    M. Khan, J. Xu, N. Chen, W. Cao, J. Alloys Compd. 513, 539 (2012)CrossRefGoogle Scholar
  25. 25.
    A.N. Banerjee, K.K. Chattopadhyay, J. Appl. Phys. 97, 1 (2005)CrossRefGoogle Scholar
  26. 26.
    G. Shao, J. Phys. Chem. C 113, 6800–6808 (2009)CrossRefGoogle Scholar
  27. 27.
    M.M. Moharam, M.M. Rashad, E.M. Elsayed, R.M. Abou-Shahba, J. Mater. Sci. Mater. Electron. 25, 1798–1803 (2014)CrossRefGoogle Scholar
  28. 28.
    F. Li, Y. Jiang, M. Xia, M. Sun, B. Xue, D. Liu, X. Zhang, J. Phys. Chem. C 113, 18134–18141 (2009)CrossRefGoogle Scholar
  29. 29.
    M.M. Rashad, A.E. Shalan, J. Mater. Sci. Mater. Electron. 24, 3189–3194 (2013)CrossRefGoogle Scholar
  30. 30.
    M.H.H. Mahmoud, A.A. Ismail, M.M.S. Sanad, Chem. Eng. J. 187, 96–103 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Electronic and Magnetic Materials Division, Advanced Materials DepartmentCentral Metallurgical Research and Development Institute (CMRDI)Helwan, CairoEgypt
  2. 2.Institute of Materials for Electronics and Energy Technology (i-MEET)Friedrich-Alexander-University of Erlangen-NurembergErlangenGermany

Personalised recommendations