Skip to main content
Log in

Hydrothermal synthesis and effects of pH values on properties of CdWO4 powders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cadmium tungstate (CdWO4) powders were synthesized by a hydrothermal method at different pH values. The samples show a pure monoclinic phase with the wolframite structure when they are synthesized at higher pH values. And the sample shows the highest crystallinity at a pH value of 7. All of the CdWO4 samples show the characteristic band at 788 cm−1 corresponding to symmetrical stretching vibration of W–O–W bond in WO4 2− group in Fourier transform infrared absorption spectra. The transmission electron microscope results show that the particle sizes increase with the increase of pH value, according with the results of X-ray diffraction. All synthesized CdWO4 samples show a broad blue–green emission at 350–550 nm. The emission intensity of sample synthesized at a pH value of 4 is nearly five times of that synthesized at a pH value of 1. These results indicate that the pH values have obvious influence on properties of CdWO4 crystal in the hydrothermal synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Mann, G.A. Ozin, Nature 382, 313 (1996)

    Article  Google Scholar 

  2. L. Manna, E.C. Scher, L.S. Li, A.P. Alivisatos, J Am Chem Soc 124, 7136 (2002)

    Article  Google Scholar 

  3. Y. Yang, Mater Sci Eng B 178, 807 (2013)

    Article  Google Scholar 

  4. A.P. Alivisatos, Science 271, 933 (1996)

    Article  Google Scholar 

  5. C.M. Lieber, Solid State Commun 107, 607 (1998)

    Article  Google Scholar 

  6. Y.G. Yang, Mater Res Innov 18, 267 (2012)

    Article  Google Scholar 

  7. S. Vidya, S. Solomon, J.K. Thomas, J Mater Sci: Mater Electron 25, 693 (2014)

    Google Scholar 

  8. X.Y. Sun, X.G. Li, X.D. Sun, J. He, B.S. Wang, J Mater Sci: Mater Electron (2014). doi:10.1007/s10854-014-1778-5

    Google Scholar 

  9. X. Wang, B. Liu, Y. Yang, Opt Laser Technol 58, 84 (2014)

    Article  Google Scholar 

  10. B. Gao, H. Fan, X. Zhang, L. Song, Mater Sci Eng B 177, 1126 (2012)

    Article  Google Scholar 

  11. A.M. Piya, R.K. Selvan, B. Senthilkumar, M.K. Satheeshkumar, C. Sanjeeviraja, Ceram Int 37, 2485 (2011)

    Article  Google Scholar 

  12. Y.B. Mao, S.S. Wong, J Am Chem Soc 126, 15245 (2004)

    Article  Google Scholar 

  13. V.A. Pustovarov, A.L. Krymov, B.V. Shulgin, E.I. Zinin, Rev Sci Instrum 63, 3521 (1992)

    Article  Google Scholar 

  14. C. Greskovich, D.A. Cusano, R.J. Riedner, D. Hoffman, Am Ceram Soc Bull 71, 1120 (1992)

    Google Scholar 

  15. K. Tanaka, N. Shirai, I. Sugiyama, R. Nakata, Nucl Instrum Methods Phys Res B 121, 404 (1997)

    Article  Google Scholar 

  16. C.L. Melcher, R.A. Manente, J.S. Schweitzer, IEEE Trans Nucl Sci 36, 1188 (1989)

    Article  Google Scholar 

  17. Y. Wang, J. Ma, J. Tao, X. Zhu, J. Zhou, Z. Zhao, L. Xie, H. Tian, Ceram Int 33, 1125 (2007)

    Article  Google Scholar 

  18. A.M. Priya, R.K. Selvan, B. Senthilkumar, M.K. Satheeshkumar, C. Sanjeeviraja, Ceram Int 37, 2485 (2011)

    Article  Google Scholar 

  19. Y. Ling, L. Zhou, L. Tan, Y. Wang, C. Yu, CrystEngComm 12, 3019 (2010)

    Article  Google Scholar 

  20. W. Tong, L. Li, W. Hu, T. Yan, G. Li, J Phys Chem C 114, 1512 (2010)

    Article  Google Scholar 

  21. H.-L. Wang, X.-D. Ma, X.-F. Qian, J. Yin, Z.-K. Zhu, J Solid State Chem 177, 4588 (2004)

    Article  Google Scholar 

  22. D.S. Sofronov, E.M. Sofronova, V.V. Starikov, V.N. Baymer, K.A. Kudin, P.V. Matejchenko, A.G. Mamalis, S.N. Lavrynenko, Mater Manuf Process 27, 490 (2012)

    Article  Google Scholar 

  23. M. Hojamberdiev, R. Kanakala, O. Ruzimuradov, Y. Yan, G. Zhu, Y. Xu, Opt Mater 34, 1954 (2012)

    Article  Google Scholar 

  24. Y. Liu, R. Zuo, J Mater Sci: Mater Electron 23, 2276 (2012)

    Google Scholar 

  25. C. Cao, A. Xia, S. Liu, L. Tong, J Mater Sci: Mater Electron 24, 4901 (2013)

    Google Scholar 

  26. Y. Wang, J. Ma, J. Tao, X. Zhu, J. Zhou, Z. Zhao, L. Xie, H. Tian, Mater Sci Eng B 130, 277 (2006)

    Article  Google Scholar 

  27. G. Huang, Y. Zhu, Mater Sci Eng B 139, 201 (2007)

    Article  Google Scholar 

  28. L. Jin, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, J. Sun, Sol Energ Mat Sol C 90, 1773 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant No. 51221291), Tsinghua University Initiative Scientific Research Program, and Beijing Key Lab of Fine Ceramics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Cheng Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, XC., Xu, YN. & Li, LT. Hydrothermal synthesis and effects of pH values on properties of CdWO4 powders. J Mater Sci: Mater Electron 25, 2601–2604 (2014). https://doi.org/10.1007/s10854-014-1917-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1917-z

Keywords

Navigation