Advertisement

Preparation and characterization of silver particulate films on softened polystyrene and poly(4-vinylpyridine) blends

  • S. C. Gurumurthy
  • Manjunatha PattabiEmail author
  • Shreedhar Krishna
  • A. B. Gaikwad
Article
  • 151 Downloads

Abstract

Results of the investigations carried out on the optical properties of silver particulate films deposited at a rate of 0.4 nm/s on softened polystyrene and poly(4-vinylpyridine) (P4VP) blends held at 455 K are reported. Under the conditions of deposition, a sub-surface particulate structure is expected. It had been shown earlier that the morphology of the sub-surface particulate structure is dependent on polymer-metal interaction. In the present studies, an inert polymer like polystyrene (PS) is blended with an interacting polymer P4VP. The optical studies on the silver particulate films deposited on softened blends of PS/P4VP have been carried out. The results show a shift in plasmon resonance to higher wavelength with increasing P4VP concentration of the blends in comparison to that of the films deposited on pure PS. An X-ray photoelectron spectroscopy study at two different electron take off angles indicates the formation of subsurface particulate structures for films deposited on blends.

Keywords

Core Level Silver Film Silver Cluster Plasmon Resonance Peak Particulate Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy, Government of India, for financial assistance.

References

  1. 1.
    A. Heilmann, Polymer Films with Embedded Metal Nano Particles (Springer Series in Materials Science 52 (Springer, New York, 2003)CrossRefGoogle Scholar
  2. 2.
    S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.G. Requicha, Nat. Mater. 2, 229 (2003)CrossRefGoogle Scholar
  3. 3.
    G.D. Girolamo, M. Massaro, E. Piscopiello, L. Tapfer, Nucl. Instrum. Methods B 268, 2878 (2010)CrossRefGoogle Scholar
  4. 4.
    G.J. Kovacs, P.S. Vincett, J. Colloid Interface. Sci. 90, 335 (1982)CrossRefGoogle Scholar
  5. 5.
    G.J. Kovacs, P.S. Vincett, Thin Solid Films 100, 341 (1983)CrossRefGoogle Scholar
  6. 6.
    G.J. Kovacs, P.S. Vincett, Thin Solid Films 111, 65 (1984)CrossRefGoogle Scholar
  7. 7.
    G.J. Kovacs, P.S. Vincett, C. Tremblay, A.L. Pundsack, Thin Solid Films 101, 21 (1983)CrossRefGoogle Scholar
  8. 8.
    K. Mohan Rao, M. Pattabi, K.S. Mayya, S.R. Sainkar, M. Sastry, Thin Solid Films 310, 97 (1997)CrossRefGoogle Scholar
  9. 9.
    M.S. Kunz, K.R. Shull, A.J. Kellock, J. Appl. Phys. 72, 4458 (1992)CrossRefGoogle Scholar
  10. 10.
    M. Pattabi, K. Mohan Rao, S.R. Sainkar, M. Sastry, Thin Solid Films 338, 40 (1999)CrossRefGoogle Scholar
  11. 11.
    K. Mohan Rao, M. Pattabi, S.R. Sainkar, A. Lobo, S.K. Kulkarni, J. Uchil, M. Sastry, J. Phys. D Appl. Phys. 32, 2327 (1999)CrossRefGoogle Scholar
  12. 12.
    Z. Zolnai, A. Deak, N. Nagy, A.L. Toth, E. Kotai, G. Battistig, Nucl. Instrum. Methods B 268, 79 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Kiesow, S. Strohkark, K. Loschner, A. Heilmann, A. Podlipensky, A. Abdolvand, G. Seifert, Appl. Phys. Lett. 86, 153111 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Kojima, T. Kato, Nanotechnology 19, 255605 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Pattabi, P. Parashar, S.C. Gurumurthy, J. Mater. Sci: Mater. Electron. 20, 1182 (2009)Google Scholar
  16. 16.
    M. Pattabi, S.C. Gurumurthy, G. Sanjeev, A.B. Gaikwad, J. Mater. Sci.: Mater. Electron. 22, 1095 (2011)Google Scholar
  17. 17.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer Series in Materials Science 25 (Springer, New York, 1995)CrossRefGoogle Scholar
  18. 18.
    E. Hutter, J.H. Fendler, Adv. Mater. 16, 1685 (2004)CrossRefGoogle Scholar
  19. 19.
    M.K. Kinnan, S. Kachan, C.K. Simmons, G. Chumanov, J. Phys. Chem. C 113, 7079 (2009)CrossRefGoogle Scholar
  20. 20.
    T. Hartling, Y. Alaverdyan, A. Hille, M.T. Wenzel, M. Kall, L.M. Eng, Opt. Exp. 16, 12362 (2008)CrossRefGoogle Scholar
  21. 21.
    W. Rechberger, A. Hohenau, A. Leitner, J.R. Kenn, B. Lamrecht, F.R. Aussenegg, Opt. Commun. 220, 137 (2003)CrossRefGoogle Scholar
  22. 22.
    T. Atay, J.-H. Song, A.V. Nurmikko, Nano Lett. 4, 1627 (2004)CrossRefGoogle Scholar
  23. 23.
    H. Yockell Lelievre, D. Gingras, R. Vallee, A.M. Ritcey, J. Phys. Chem. C 113, 21293 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Werner, A. Heilmann, V. Hopfe, F. Homilius, B. Steiger, O. Stenzel, Thin Solid Films 237, 193 (1994)CrossRefGoogle Scholar
  25. 25.
    S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 21, 165 (1993)CrossRefGoogle Scholar
  26. 26.
    C.S. Fadley, Progress in Solid State Chemistry, vol. 11 (Pergamon, New York, 1976)Google Scholar
  27. 27.
    M. Sastry, J. Electron. Spectrosc. 85, 167 (1997). and references thereinCrossRefGoogle Scholar
  28. 28.
    J.H. Scofield, J. Electron. Spectrosc. 8, 129 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. C. Gurumurthy
    • 1
    • 3
  • Manjunatha Pattabi
    • 1
    Email author
  • Shreedhar Krishna
    • 2
  • A. B. Gaikwad
    • 2
  1. 1.Materials Science DepartmentMangalore UniversityMangalagangotriIndia
  2. 2.CMCNational Chemical LaboratoryPuneIndia
  3. 3.Department of Physics, Manipal Institute of TechnologyManipal UniversityManipalIndia

Personalised recommendations