Skip to main content
Log in

A single nanobelt to achieve simultaneous photoluminescence–electricity–magnetism trifunction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to develop new-typed multifunctional composite nanobelts, polymethyl methacrylate (PMMA) is used as the matrix to construct composite nanobelts containing different amounts of Eu(BA)3phen(BA = benzoic acid, phen = phenanthroline), polyaniline (PANI) and Fe3O4 nanoparticles (NPs), and Eu(BA)3phen/PANI/Fe3O4/PMMA trifunctional composite nanobelts with simultaneous photoluminescence, electricity and magnetism have been successfully fabricated via electrospinning technology. The morphology and properties of the obtained composite nanobelts were characterized by X-ray diffractometry, scanning electron microscopy, vibrating sample magnetometry, fluorescence spectroscopy and Hall effect measurement system. The results indicate that the trifunctional composite nanobelts simultaneously possess excellent photoluminescence, electrical conduction and magnetic properties. Fluorescence emission peaks of Eu3+ ions in the composite nanobelts are observed and assigned to the energy levels transitions of 5D0 → 7F0 (580 nm), 5D0 → 7F1 (593 nm) and 5D0 → 7F2 (615 nm) of Eu3+ ions, and the 5D0 → 7F2 hypersensitive transition at 615 nm is the predominant emission peak. The electrical conductivity reaches up to the order of 10−3 S/cm. Furthermore, the luminescent intensity, electrical conductivity and saturation magnetization of the composite nanobelts can be tunable by adjusting amounts of Eu(BA)3phen, PANI and Fe3O4 NPs. The formation mechanism of the composite nanobelts is also proposed. The obtained photoluminescence–electricity–magnetism trifunctional composite nanobelts have potential applications in many areas such as electromagnetic interference shielding, microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other trifunctional naonobelts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Sambaer, M. Zatloukal, D. Kimmer, Chem. Eng. Sci. 66, 613–623 (2011)

    Article  Google Scholar 

  2. J.M. Corres, Y.R. Garcia, F.J. Arregui, I.R. Matias, IEEE Sens. J. 11, 2383–2387 (2011)

    Article  Google Scholar 

  3. S.A. Sell, P.S. Wolfe, J.J. Ericksen, D.G. Simpson, G.L. Bowlin, Tissue Eng. Part A 17, 2723–2737 (2011)

    Article  Google Scholar 

  4. S.L. Chen, H.Q. Hou, F. Harnisch, S.A. Patil, A.A. Carmona-Martinez, S. Agarwal, Y.Y. Zhang, S. Sinha-Ray, A.L. Yarin, A. Greiner, U. Schröder, Energy Environ. Sci. 4, 1417–1421 (2011)

    Article  Google Scholar 

  5. M. Alvaro, V. Fornés, S. García, H. García, J.C. Scaiano, J. Phys. Chem. B 102, 8744–8750 (1998)

    Article  Google Scholar 

  6. Q. Xu, L. Li, X. Liu, R. Xu, Chem. Mater. 14, 549–555 (2002)

    Article  Google Scholar 

  7. H. Li, S. Inoue, K. Machida, G. Adachi, Chem. Mater. 11, 3171–3176 (1999)

    Article  Google Scholar 

  8. H.Y. Feng, S.H. Jian, Y.P. Wang, Z.Q. Lei, R.M. Wang, J. Appl. Polym. Sci. 68, 1605–1611 (1998)

    Article  Google Scholar 

  9. Q. Ling, M. Yang, Z. Wu, X. Zhang, L. Wang, W. Zhang, Polymer 42, 4605–4610 (2001)

    Article  Google Scholar 

  10. D.H. Zhang, Y.Y. Wang, Mater. Sci. Eng., B 134, 9–19 (2006)

    Article  Google Scholar 

  11. S. Virji, R.B. Kaner, B.H. Weiller, Chem. Mater. 17, 1256–1260 (2005)

    Article  Google Scholar 

  12. Q.H. Zhang, H.F. Jin, X.H. Wang, X.B. Jing, Synth. Met. 123, 481–485 (2001)

    Article  Google Scholar 

  13. J. Huang, S. Virji, B.H. Weiller, R.K. Prof, Chem. Eur. J. 10, 1314–1319 (2004)

    Article  Google Scholar 

  14. Q.Z. Yu, M.M. Shi, M. Deng, M. Wang, H.Z. Chen, Mater. Sci. Eng., B 150, 70–76 (2008)

    Article  Google Scholar 

  15. F. Chabert, D.E. Dunstan, G.V. Franks, J. Am. Ceram. Soc. 91, 3138–3146 (2008)

    Article  Google Scholar 

  16. J.B. Ballengee, P.N. Pintauro, J. Electrochem. Soc. 158, B568–B572 (2011)

    Article  Google Scholar 

  17. D.S. Tang, S.S. Xie, Z.W. Pan, L.F. Sun, Z.Q. Liu, X.P. Zou, Y.B. Li, L.J. Ci, W. Liu, B.S. Zou, W.Y. Zhou, Chem. Phys. Lett. 356, 563–566 (2002)

    Article  Google Scholar 

  18. M.C.K. Wiltshire, J.B. Pendry, I.R. Young, D.J. Larkman, D.J. Gilderdale, J.V. Hajnal, Science 291, 849–851 (2001)

    Article  Google Scholar 

  19. P. Trivedi, L. Axe, Environ. Sci. Technol. 34, 2215–2223 (2000)

    Article  Google Scholar 

  20. S. Bucak, D.A. Jones, P.E. Laibinis, Biotechnol. Progr. 19, 477–484 (2003)

    Article  Google Scholar 

  21. S.V. Kolotilov, O. Cador, F. Pointillart, S. Golhen, Y.L. Gai, K.S. Gavrilenko, L. Ouahab, J. Mater. Chem. 20, 9505–9514 (2010)

    Article  Google Scholar 

  22. B.K. Balan, V.S. Kale, P.P. Aher, M.V. Shelke, V.K. Pillai, S. Kurunqut, Chem. Commun. 46, 5590–5592 (2010)

    Article  Google Scholar 

  23. P. Lu, J.L. Zhang, Y.L. Liu, D.H. Sun, G.X. Liu, G.Y. Hong, J.Z. Ni, Talanta 82, 450–457 (2010)

    Article  Google Scholar 

  24. H. Peng, G. Liu, X. Dong, J. Wang, W. Yu, J. Alloys Compd. 509, 6930–6934 (2011)

    Article  Google Scholar 

  25. W. Wang, M. Zou, K. Chen, Chem. Commun. 46, 5100–5102 (2010)

    Article  Google Scholar 

  26. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, J. Nanopart. Res. 14, 1–7 (2012)

    Google Scholar 

  27. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, Opt. Mater. 35, 526–530 (2013)

    Article  Google Scholar 

  28. Y.H. Wang, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. J. Chin. U 8, 1657–1662 (2012)

    Google Scholar 

  29. R. Katal, S. Pourkarimi, E. Bahmani, H.A. Dehkordi, M.A. Ghayyem, H. Esfandian, J. Vin, Addit. Technol. 19, 147–156 (2013)

    Article  Google Scholar 

  30. S.B. Meshkova, J. Fluoresc. 10, 333–337 (2000)

    Article  Google Scholar 

  31. Y.F. Zhu, W.R. Zhao, H.R. Chen, J.L. Shi, J. Phys. Chem. C 111, 5281–5285 (2007)

    Article  Google Scholar 

  32. Q. Gao, F.H. Chen, J.L. Zhang, G.Y. Hong, J.Z. Ni, X. Wei, D.J. Wang, J. Magn. Magn. Mater. 321, 1052–1057 (2009)

    Article  Google Scholar 

  33. S. Xuan, L. Hao, W. Jiang, X. Gong, Y. Hu, Z. Chen, J. Magn. Magn. Mater. 308, 210–213 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002,20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402, 20060504), the Research Project of Science and Technology of Department of Education of Jilin Province “11th 5-year plan” (Grant Nos. 2010JYT01), Key Research Project of Science and Technology of Ministry of Education of China (Grant No. 207026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangting Dong or Jinxian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, S., Ma, Q., Dong, X. et al. A single nanobelt to achieve simultaneous photoluminescence–electricity–magnetism trifunction. J Mater Sci: Mater Electron 25, 2279–2286 (2014). https://doi.org/10.1007/s10854-014-1872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1872-8

Keywords

Navigation