Skip to main content
Log in

Enhancement of room temperature ferromagnetism in Cd1−xNixSe nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cd1−xNixSe (x = 0.0, 0.02, 0.05 and 0.1) nanoparticles have been synthesized by chemical route. X-ray diffraction analysis shows crystalline nature of synthesized nanoparticles possessing wurtzite phase having hexagonal structure. Transmission electron microscopy depicts spherical morphology and uniform particle size distribution of pure and Ni-doped CdSe nanoparticles. The blue-shift in band gap has been observed with Ni-doping concentration. Photoluminescence study shows the presence of intrinsic defects (VCd–VSe) in the synthesized nanoparticles. Electron spin resonance (ESR) analysis reveals the long range ferromagnetic ordering in pure and doped nanoparticles. ESR study also indicates that Ni ions exist in +2 oxidation state in host nanoparticles. The magnetic hysteresis (M-H) loops display ferromagnetism at room temperature in pure and Ni-doped CdSe nanoparticles. The increase of ferromagnetic behavior has been observed with Ni-doping concentration. M-H analyses indicate that defects and carrier mediated exchange interactions are responsible for ferromagnetic ordering, in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)

    Article  Google Scholar 

  2. F. Mikailzade, Nanostructured materials for magnetoelectronics, ed. by B. Aktas (Springer, New York, 2013)

  3. C. Liu, F. Yun, H. Morkoc, J. Mater. Sci. Mater. Electron. 16, 555 (2005)

    Article  Google Scholar 

  4. D.W. Chu, Y.P. Zeng, D.L. Jiang, Solid. State. Commun. 143, 308–312 (2007)

    Article  Google Scholar 

  5. B.T. Jonker, W.C. Chou, A. Petrou, J. Warnock, J. Vac. Sci. Technol. A. 10, 1458 (1992)

    Article  Google Scholar 

  6. M. Elango, K. Gopalakrishnan, S. Vairam, M. Thamilselvan, J. Alloy. Compd. 538, 48 (2012)

    Article  Google Scholar 

  7. T. Dietl, Nat. Mater. 9, 965 (2010)

    Article  Google Scholar 

  8. K. Sato, L. Bergqvist, J. Kudrnovský, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H.K. Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, Rev. Mod. Phys. 82, 1633 (2010)

    Article  Google Scholar 

  9. B. Pal, P.K. Giri, J. Nanosci. Nanotechnol. 11, 9167 (2011)

    Article  Google Scholar 

  10. E. Biegger, L. Staheli, M. Fonin, U. Rudiger, Y.S. Dedkov, J. Appl. Phys. 101, 103912 (2007)

    Article  Google Scholar 

  11. S. Kumar, S. Kumar, N.K. Verma, S.K. Chakarvarti, J. Mater. Sci. Mater. Electron. 22, 901 (2011)

    Article  Google Scholar 

  12. J. Singh, N.K. Verma, J. Supercon, Nov. Magn. 25, 2425 (2012)

    Article  Google Scholar 

  13. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley, Reading MA, 1978)

    Google Scholar 

  14. M. Elango, D. Nataraj, K. Prem Nazeer, M. Thamilselvan, Mater. Res. Bull. 47, 1533 (2012)

    Article  Google Scholar 

  15. M. Thambidurai, N. Muthukumarasamy, S. Agilan, N.S. Arul, N. Murugan, R. Balasundaraprabhu, J. Mater. Sci. 46, 3200 (2011)

    Article  Google Scholar 

  16. G. Kortüm, Reflectance spectroscopy: principles, methods, application (Springer, New York, 1969)

    Book  Google Scholar 

  17. A.I. Ekimov, F. Hache, M.C. Schanne-Klein, D. Ricard, C. Flytzanis, I.A. Kudryavtsev, T.V. Yazeva, A.V. Rodina, A.L. Efros, J. Opt. Soc. Am. B. 10, 100 (1993)

    Article  Google Scholar 

  18. V. Babentsov, J. Riegler, J. Schneider, O. Ehlert, T. Nann, M. Fiederle, J. Cryst. Growth. 280, 502 (2005)

    Article  Google Scholar 

  19. P.H. Borse, N. Deshmukh, R.F. Shinde, S.K. Date, S.K. Kulkarni, J. Mater. Sci. 34, 6087 (1999)

    Article  Google Scholar 

  20. J. Singh, N.K. Verma, J. Mater. Sci. Mater. Electron. 24, 4464 (2013)

    Article  Google Scholar 

  21. H. Sekhar, D.N. Rao, J. Alloy, Compd. 517, 103 (2012)

    Article  Google Scholar 

  22. S.B. Singh, M.V. Limaye, S.K. Date, S. Gokhale, S.K. Kulkarni, Phys. Rev. B. 80, 235421 (2009)

    Article  Google Scholar 

  23. J.A. Weil, J.R. Bolton, J.E. Wertz, Electron paramagnetic resonance: elementary theory and practical applications (Wiley, New York, 1994)

    Google Scholar 

  24. S. Neeleshwar, C.L. Chen, C.B. Tsai, Y.Y. Chen, C.C. Chen, S.G. Shyu, M.S. Seehra, Phys. Rev. B. 71, 201307 (2005)

    Article  Google Scholar 

  25. R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997)

    Article  Google Scholar 

  26. X. He, W. Zhong, C.T. Au, Y. Du, Nanoscale. Res. Lett. 8, 446 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Defense Research and Development Organization (DRDO), India for granting financial support (vide sanction letter no. ERIP/ER/0903766/M/01/1191) to carry out this research work. One of the authors, Jaspal Singh, gratefully acknowledges Thapar University, Patiala, India for providing Teaching Associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaspal Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J., Kumar, S. & Verma, N.K. Enhancement of room temperature ferromagnetism in Cd1−xNixSe nanoparticles. J Mater Sci: Mater Electron 25, 2267–2272 (2014). https://doi.org/10.1007/s10854-014-1870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1870-x

Keywords

Navigation