Skip to main content
Log in

Preparation process, microstructure and dielectric properties of Na0.5La0.5Cu3Ti4O12 ceramics by a sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effect of concentration, water content (molar ratio of the water and titanium) and pH value of the sol, and sintering temperatures and holding time on microstructure and dielectric properties of Na0.5La0.5Cu3Ti4O12 (NLCTO) ceramics by a sol–gel method were investigated in detail, respectively. It is found that the optimum concentration, the molar ratio of the water and titanium, and pH value of the sol were 1.00 mol/L, 11.0, and 0.3, respectively. The NLCTO ceramics sintered at 1,080 °C for 10 h exhibited more homogeneous microstructure, higher dielectric constant (about 1.1–1.8 × 104) and lower dielectric loss (about 0.051–0.064 at 1–10 kHz). The higher dielectric constant of the NLCTO ceramics might be due to the internal barrier layer capacitor effect. The NLCTO ceramics prepared by the sol–gel method showed two kinds of dielectric relaxation at higher temperature by electric modulus analysis, and two relaxation activation energy values were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  2. P.B. Shri, K.B.R. Varma, Phys. B 403, 2246 (2008)

    Article  Google Scholar 

  3. P.F. Liang, Z.P. Yang, X.L. Chao, Z.H. Liu, J. Am. Ceram. Soc. 95, 2218 (2012)

    Article  Google Scholar 

  4. H.M. Ren, P.P. Liang, Z.P. Yang, Mater. Res. Bull. 45, 1608 (2010)

    Article  Google Scholar 

  5. P. Thongbai, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 432 (2012)

    Article  Google Scholar 

  6. Q. Zheng, H.Q. Fan, J. Alloy. Compd. 511, 90 (2012)

    Article  Google Scholar 

  7. Y.G. Metlin, Y.D. Tretyakov, J. Mater. Chem. 4, 1659 (1994)

    Article  Google Scholar 

  8. J.J. Liu, R.W. Smith, W.N. Mei, Chem. Mater. 19, 6020 (2007)

    Article  Google Scholar 

  9. D.L. Sun, A.Y. Wu, S.T. Yiny, Structure. J. Am. Ceram. Soc. 91, 169 (2008)

    Article  Google Scholar 

  10. L.J. Liu, H.Q. Fan, P.Y. Fang, X.L. Chen, Mater. Res. Bull. 43, 1800 (2008)

    Article  Google Scholar 

  11. B. Xu, J. Zhang, Z.M. Tian, Mater. Lett. 75, 87 (2012)

    Article  Google Scholar 

  12. Z.Q. Liu, G.S. Jiao, X.L. Chao, Z.P. Yang, Mater. Res. Bull. 48, 4877 (2013)

    Article  Google Scholar 

  13. J.G. Wu, D.Q. Xiao, B. Wu, W.J. Wu, J.G. Zhu, Z.C. Yang, J.H. Wang, Mater. Res. Bull. 47, 1281 (2012)

    Article  Google Scholar 

  14. S.H. Jin, H.P. Xia, Y.P. Zhang, J.P. Guo, J. Xu, Mater. Lett. 61, 1404 (2007)

    Article  Google Scholar 

  15. P. Leret, J.F. Fernandez, J. Frutos, D. Fernández-Hevia, J. Eur. Ceram. Soc. 27, 3901 (2007)

    Article  Google Scholar 

  16. J.G. Wu, J.H. Wang, J. Am. Ceram. Soc. 93, 2795 (2010)

    Article  Google Scholar 

  17. J.G. Wu, J.H. Wang, D.Q. Xiao, J.G. Zhu, J. Appl. Phys. 110, 064104 (2011)

    Article  Google Scholar 

  18. S.M. Moussa, B.J. Kennedy, Mater. Res. Bull. 36, 2525 (2001)

    Article  Google Scholar 

  19. G.Z. Zang, J.L. Zhang, P. Zheng, J.F. Wang, C.L. Wang, J. Phys. D Appl. Phys. 38, 1824 (2005)

    Article  Google Scholar 

  20. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  21. M.A. Siddiqui, V.S. Chandel, A. Azam, Appl. Surf. Sci. 258, 7354 (2012)

    Article  Google Scholar 

  22. I. Bakonyi, E.T. Kadar, B. Fograrassy, Nanostruct. Mater. 3, 155 (1993)

    Article  Google Scholar 

  23. J.L. Zhang, Z.J. Tang, Phys. Rev. B 70, 17436 (2004)

    Google Scholar 

  24. J.J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B 70, 144106 (2004)

    Article  Google Scholar 

  25. M. Li, A. Feteira, D.C. Sinclair, J. Appl. Phys. 105, 114109 (2009)

    Article  Google Scholar 

  26. Y.H. Lin, J.N. Cai, M. Li, C.W. Nan, J.L. He, J. Appl. Phys. 103, 074111 (2008)

    Article  Google Scholar 

  27. R.K. Grubbs, E.L. Venturini, P.G. Clem, J.J. Richardson, B.A. Tuttle, G.A. Samara, Phys. Rev. B 72, 104111 (2005)

    Article  Google Scholar 

  28. B.S. Prakash, K.B.R. Varma, J. Phys. Chem. Solids 68, 490 (2007)

    Article  Google Scholar 

  29. C.H. Mu, H.W. Zhang, Y. He, P. Liu, Phys. B 405, 386 (2010)

    Article  Google Scholar 

  30. L. Zhang, Appl. Phys. Lett. 87, 022907 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (NSFC) (Grant Nos. 51172136 and 51107077) and Innovation Funds for graduate education (Grant No. 2012CXB011) and the Fundamental Research Funds for the Central Universities (Grant No. GK201102001, GK201101004, GK201101003). Open Fund of Shaanxi Province Key Laboratory (Program No. 2010SYS-07). Development Funds of Shaanxi Province Army-civilian Integration (Program No. 13JMR20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zupei Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Chao, X. & Yang, Z. Preparation process, microstructure and dielectric properties of Na0.5La0.5Cu3Ti4O12 ceramics by a sol–gel method. J Mater Sci: Mater Electron 25, 2096–2103 (2014). https://doi.org/10.1007/s10854-014-1845-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1845-y

Keywords

Navigation