Skip to main content

Advertisement

Log in

Improving photoelectrical performance of dye sensitized solar cells by doping Y2O3:Tb3+ nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Y2O3:Tb3+ nanorods have been successfully synthesized via a hydrothermal method and then introduced into the photoanode of dye-sensitized solar cell. As a p-type dopant, Y2O3:Tb3+ enhances the Fermi level of TiO2 film. Meanwhile, it also improves the short-circuit current density and the light-to-electric energy conversion efficiency by acting as a luminescence medium which can convert ultraviolet light to visible light efficiently. As a result, the conversion efficiency can reach 7.942 % when the doping amount is 4 wt%. The light-to-electric conversion efficiency is increased by a factor of 2.051 compared to that of a cell without Y2O3:Tb3+ doping. The mechanism has been discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. O’regan, M. Grätzel, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. M.J. Grätzel, Photochem. Photobiol, A 164, 3–14 (2004)

    Article  Google Scholar 

  3. Y. Liu, J.R. Jennings, S.M. Zakeeruddin, M. Grätzel, Q. Wang, JACS 135, 3939–3952 (2013)

    Article  Google Scholar 

  4. L.M. Peter, J. Phys. Chem. Lett. 2, 1861–1867 (2011)

    Article  Google Scholar 

  5. M. Grätzel, Curr. Opin. Colloid. In. 4, 314–321 (1999)

    Article  Google Scholar 

  6. J.K. Lee, B.H. Jeong, S.I. Jang, Y.S. Yeo, S.H. Park, J.U. Kim, M.R. Kim, J. Mater. Sci.: Mater. Electron. 20, 446–450 (2009)

    Google Scholar 

  7. V.P.S. Perera, Chem. Commun. 1, 15–16 (1999)

    Google Scholar 

  8. K. Tennakone, V.P.S. Perera, I.R.M.A. Kottegoda, G.R.R. Kumara, J.Phys. D.Appl. Phys 32, 374 (1999)

    Article  Google Scholar 

  9. Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coordin. Chem. Rev. 248, 1381–1389 (2004)

    Article  Google Scholar 

  10. Q. Zhang, G. Cao, Nano Today 6, 91–109 (2006)

    Article  Google Scholar 

  11. Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087–4108 (2009)

    Article  Google Scholar 

  12. T.S. Senthil, N. Muthukumarasamy, D. Velauthapillai, S. Agilan, M. Thambidurai, R. Balasundaraprabhu, Renew. Energy. 36, 2484–2488 (2011)

    Article  Google Scholar 

  13. J. Wang, J. Wu, J. Lin, M. Huang, Y. Huang, Z. Lan, T. Sato, ChemSusChem. 5, 1307–1312 (2012)

    Article  Google Scholar 

  14. Q. Li, J. Lin, J. Wu, Z. Lan, J. Wang, Y. Wang, Y. Xiao, Chin. Sci. Bull. 56, 3114–3118 (2011)

    Article  Google Scholar 

  15. H. Hafez, J. Wu, Z. Lan, Q. Li, G. Xie, J. Lin, M.S. Abdel-Mottaleb, Nanotechnology. 21, 415201 (2010)

    Article  Google Scholar 

  16. Q. Li, J. Lin, J. Wu, Z. Lan, Y. Wang, F. Peng, M. Huang, Electrochim. Acta 56, 4980–4984 (2011)

    Article  Google Scholar 

  17. G. Xie, Y. Wei, L. Fan, J. Wu, IOPP. 339, 012010 (2012)

    Google Scholar 

  18. J. Wu, J. Wang, J. Lin, Z. Lan, Q. Tang, M. Huang, Z. Tang, Adv. Energy. Mater. 2, 78–81 (2012)

    Article  Google Scholar 

  19. G. Xie, J. Lin, J. Wu, Z. Lan, Q. Li, Y. Xiao, M. Huang, Chin. Sci. Bull. 56, 96–101 (2011)

    Article  Google Scholar 

  20. J. Zhang, H. Shen, W. Guo, S. Wang, C. Zhu, F. Xue, Z. Yuan, J. Power Sour. 226, 47–53 (2013)

    Article  Google Scholar 

  21. A. Hagfeldt, M. Grätzel, Accounts. Chem. Res. 33, 269–277 (2000)

    Article  Google Scholar 

  22. C. De Mello Donegá, S.J.L. Ribeiro, R.R. Gonçalves, G. Blasse, J. Phys. Chem. Solids 57, 1727–1734 (1996)

    Article  Google Scholar 

  23. T. Tomiki, J. Tamashiro, Y. Tanahara, A. Yamada, H. Fukutani, T. Miyahara, M. Ishigame, J. Phys. Soc. Jpn. 55, 4543 (1986)

    Article  Google Scholar 

  24. Y. Nigara, Jap. J. Appl. Phys. 7, 404–408 (1968)

    Article  Google Scholar 

  25. T. Tomiki, T. Shikenbaru, Y. Ganaha, T. Futemma, H. Kato, M. Yuri, J. Tamashiro, J. Phys. Soc. Jpn. 61, 2951–2963 (1992)

    Article  Google Scholar 

  26. K. Lebbou, P. Perriat, O. Tillement, J Nanosci Nanotechno 5, 1448–1454 (2005)

    Article  Google Scholar 

  27. P.A. Tanner, J. Nanosci Nanotechno. 5, 1455–1464 (2005)

    Article  Google Scholar 

  28. H. Lu, B. Dong, L. Zhao, S. Wang, Z. Xu, J. Li, J. Mater. Sci.: Mater. Electron. 23, 1905 (2012)

    Google Scholar 

  29. J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, T. Sato, JACS. 130, 11568–11569 (2008)

    Article  Google Scholar 

  30. T. Renouard, R.A. Fallahpour, M.K. Nazeeruddin, R. Humphry-Baker, S.I. Gorelsky, A.B.P. Lever, M. Grätzel, Inorg. Chem. 41, 367–378 (2002)

    Article  Google Scholar 

  31. Peter.A. Tanner, Lianshe. Fu, Chem. Phys. Lett. 470, 75–79 (2009)

    Article  Google Scholar 

  32. H. Najafov, Y. Satoh, S. Ohshio, A. Kato, H. Saitoh, Jpn. J. Appl. Phys. 43, 7111 (2004)

    Article  Google Scholar 

  33. S. Mukherjee, V. Sudarsan, R.K. Vatsa, S.V. Godbole, R.M. Kadam, U.M. Bhatta, A.K. Tyagi, J. Lumin. 126, 838–842 (2007)

    Article  Google Scholar 

  34. Hongwei. Song, Ji.Wei. Wang, J. Lumin. 118, 220–226 (2006)

    Article  Google Scholar 

  35. Y.C. Wu, C. Garapon, R. Bazzi, A. Pillonnet, O. Tillement, J. Mugnier, Appl. Phys. A 87, 697–704 (2007)

    Google Scholar 

  36. R. Van de Krol, A. Goossens, J.J. Schoonman, Electrochem Soc. 144, 1723–1727 (1997)

    Article  Google Scholar 

  37. H.J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, N.G. Park, Inorg. Chim. Acta 361, 677–683 (2008)

    Article  Google Scholar 

  38. M. Grätzel, Accounts. Chem. Res. 42, 1788–1798 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC#90922028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Lin, J. & Wu, J. Improving photoelectrical performance of dye sensitized solar cells by doping Y2O3:Tb3+ nanorods. J Mater Sci: Mater Electron 25, 2060–2065 (2014). https://doi.org/10.1007/s10854-014-1840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1840-3

Keywords

Navigation