Advertisement

Semiconductor to metal transition in degenerate ZnO: Al films and the impact on its carrier scattering mechanisms and bandgap for OLED applications

  • Jitendra Kumar Jha
  • Reinaldo Santos-Ortiz
  • Jincheng Du
  • Nigel D. ShepherdEmail author
Article

Abstract

Temperature dependent Hall measurements revealed that ionized impurity scattering was the dominant mechanism in sputter deposited, degenerate, aluminum doped zinc oxide (AZO) films up to ~530 nm thickness, and a semiconductor to metal transition was observed when thickness was further increased. With the increase in film thickness, the mobility and conductivity also increased from 6.70 to 18.7 cm2 V−1 s−1 and 1.83 × 102–8.28 × 102 (Ω cm)−1, respectively. However, this was accompanied by a larger than 0.2 eV Burstein–Moss blue-shift of the interband absorption edge determined from absorption spectra. The movement of the Fermi level further into the conduction band that accompanies the Burstein–Moss shift results in a corresponding workfunction decrease of the films. This means that the interface barrier for hole injection in anode applications such as organic light emitting diodes (OLEDs) becomes larger, which translates into higher turn-on voltages and lower current and power efficiencies compared to indium tin oxide anodes. It is suggested that improving conductivity through mobility increases, and increasing workfunction through surface functionalization may improve the prospects of AZO films in OLEDs and other applications where in addition to conductivity and transparency, workfunction is also critical.

Keywords

Aluminum Dope Zinc Oxide Free Electron Concentration Aluminum Dope Zinc Oxide Film Ionize Impurity Scattering Native Point Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is sponsored by the National Science Foundation under Grant No. 1234978.

References

  1. 1.
    S.-H.K. Park, J.-I. Lee, C.-S. Hwang, H.Y. Chu, Jpn. J. Appl. Phys. 44, L242 (2005)CrossRefGoogle Scholar
  2. 2.
    E.W. Forsythe, Y. Gao, L.G. Provost, G.S. Tompa, J. Vac. Sci. Technol. A Vac. Surf. Films 17, 1761 (1999)CrossRefGoogle Scholar
  3. 3.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V.C.S.J. Avrutin, S.-J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  4. 4.
    Geological Survey, Mineral Commodity Summaries: 2013, (Government Printing Office, 2013)Google Scholar
  5. 5.
    Z.-L. Tseng, P.-C. Kao, C.-S. Yang, Y.-D. Juang, S.-Y. Chu, Appl. Surf. Sci. 261, 360 (2012)CrossRefGoogle Scholar
  6. 6.
    D. Huang, X. Zeng, Y. Zheng, X. Wang, Y. Yang, Front. Optoelectron. 6, 114 (2013)CrossRefGoogle Scholar
  7. 7.
    K.C. Park, D.Y. Ma, K.H. Kim, Thin Solid Films 305, 201 (1997)CrossRefGoogle Scholar
  8. 8.
    B.S. Chun, H.C. Wu, M. Abid, I.C. Chu, S. Serrano-Guisan, I.V. Shvets, D. Choi, Appl. Phys. Lett. 97, 082109 (2010)CrossRefGoogle Scholar
  9. 9.
    H.B. Zhou, H.Y. Zhang, M.L. Tan, W.J. Zhang, W.L. Zhang, Mater. Res. Innov. 16(6), 390 (2012)CrossRefGoogle Scholar
  10. 10.
    J.J. Ding, S.Y. Ma, H.X. Chen, X.F. Shi, T.T. Zhou, L.M. Mao, Phys. B Condens. Matter 404, 2439 (2009)CrossRefGoogle Scholar
  11. 11.
    J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, Q.L. Liang, J. Appl. Phys. 100, 073714 (2006)CrossRefGoogle Scholar
  12. 12.
    B.-Z. Dong, G.-J. Fang, J.-F. Wang, W.-J. Guan, X.-Z. Zhao, J. Appl. Phys. 101, 033713 (2007)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, J. Lian, Appl. Surf. Sci. 253, 3727 (2007)CrossRefGoogle Scholar
  14. 14.
    I. Volintiru, M. Creatore, B.J. Kniknie, C.I.M.A. Spee, M.C.M. Van De Sanden, J. Appl. Phys. 102, 043709 (2007)CrossRefGoogle Scholar
  15. 15.
    B. Joseph, P.K. Manoj, V.K. Vaidyan, Ceram. Int. 32, 487 (2006)CrossRefGoogle Scholar
  16. 16.
    F.-L. Kuo, Y. Li, M. Solomon, J. Du, N.D. Shepherd, J. Phys. D 45, 065301 (2012)CrossRefGoogle Scholar
  17. 17.
    F.L. Kuo, M.‐.T. Lin, B.A. Mensah, T.W. Scharf, N.D. Shepherd, Phys. Status Solidi A 207, 2487 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Li, W.-H. Chen, M.-T. Lin, M.A. Omary, N.D. Shepherd, Org. Electron. 10, 863 (2009)CrossRefGoogle Scholar
  19. 19.
    M.-T. Lin, M. Li, W.-H. Chen, M.A. Omary, N.D. Shepherd, Solid State Electron. 56, 196 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Li, M.-T. Lin, W.-H. Chen, R. McDougald, R. Arvapally, M. Omary, N.D. Shepherd, Phys. Status Solidi A 209, 221 (2012)CrossRefGoogle Scholar
  21. 21.
    M. Li, W.-H. Chen, M.-T. Lin, I. Oswald, M. Omary, N.D. Shepherd, J. Phys. D 44, 365103 (2011)CrossRefGoogle Scholar
  22. 22.
    Z.-L. Tseng, P.-C. Kao, Y.-C. Chen, Y.-D. Juang, Y.-M. Kuo, S.-Y. Chu, J. Electrochem. Soc. 158, J310 (2011)CrossRefGoogle Scholar
  23. 23.
    C. Jagdish, S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties (2006)Google Scholar
  24. 24.
    S. Maniv, W.D. Westwood, E. Colombini, J. Vac. Sci. Technol. 20, 162 (1982)CrossRefGoogle Scholar
  25. 25.
    R.D. Shannon, Acta Crystallogr. Sect. A Crystal Phys. Diffr. Theor. Gen. Crystallogr. 32, 751 (1976)CrossRefGoogle Scholar
  26. 26.
    B.D. Cullity, BiblioBazaar (2011)Google Scholar
  27. 27.
    D.H. Zhang, H.L. Ma, Appl. Phys. A 62, 487 (1996)CrossRefGoogle Scholar
  28. 28.
    S. Noguchi, H. Sakata, J. Phys. D Appl. Phys. 13, 1129 (1980)CrossRefGoogle Scholar
  29. 29.
    P.S. Kireev, Semicond. Phys. (Mir, Moscow) 397 (1978)Google Scholar
  30. 30.
    J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, J. Appl. Phys. 101, 083705 (2007)CrossRefGoogle Scholar
  31. 31.
    K.T. Roro, G.H. Kassier, J.K. Dangbegnon, S. Sivaraya, J.E. Westraadt, J.H. Neethling, A.W.R. Leitch, J.R. Botha, Semicond. Sci. Technol. 23, 055021 (2008)CrossRefGoogle Scholar
  32. 32.
    T.G. Castner, N.K. Lee, G.S. Cieloszyk, G.L. Salinger, Phys. Rev. Lett. 34, 1627 (1975)CrossRefGoogle Scholar
  33. 33.
    S. Liang, X. Bi, J. Appl. Phys. 104, 113533 (2008)CrossRefGoogle Scholar
  34. 34.
    T.S. Moss, Proc. Phys. Soc. B 67, 775 (1954)CrossRefGoogle Scholar
  35. 35.
    E. Burstein, Phys. Rev. 93, 632 (1954)CrossRefGoogle Scholar
  36. 36.
    J. Jia, A. Takasaki, N. Oka, Y. Shigesato, J. Appl. Phys. 112, 013718 (2012)CrossRefGoogle Scholar
  37. 37.
    S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson, Appl. Phys. Lett. 75, 2761 (1999)CrossRefGoogle Scholar
  38. 38.
    K.E. Lee, M. Wang, E.J. Kim, S.H. Hahn, Curr. Appl. Phy. 9, 683 (2009)CrossRefGoogle Scholar
  39. 39.
    F. Zhu-xi, G. Chang-Xin, L. Bi-Xia, L. Gui-Hong, Chin. Phys. Lett. 15(6), 457 (1998)CrossRefGoogle Scholar
  40. 40.
    H.X. Chen, J.J. Ding, X.G. Zhao, S.Y. Ma, Phys. B Condens. Matter 405, 1339 (2010)CrossRefGoogle Scholar
  41. 41.
    K. Prabakar, C. Kim, C. Lee, Cryst. Res. Technol. 40, 1150 (2005)CrossRefGoogle Scholar
  42. 42.
    Q.P. Wang, D.H. Zhang, H.L. Ma, X.H. Zhang, X.J. Zhang, Appl. Surf. Sci. 220, 12 (2003)CrossRefGoogle Scholar
  43. 43.
    H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95, 1246 (2004)CrossRefGoogle Scholar
  44. 44.
    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jitendra Kumar Jha
    • 1
  • Reinaldo Santos-Ortiz
    • 1
  • Jincheng Du
    • 1
  • Nigel D. Shepherd
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA

Personalised recommendations