Skip to main content
Log in

Vortex pinning and magnetic peak effect in Eu(Eu,Ba)2.125Cu3Ox

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Eu–Ba–Cu–O composition was synthesized by solid state reaction technique. To determine optimum growth temperature, heat treatment was examined on the material at 880–1,100 °C. Microstructural evolution, phase formation and elemental distribution depending on heat treatments were examined by using X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscope analysis. Optimum fabrication conditions were determined as 1,020 °C for 24 h under oxygen atmosphere and detailed characterization of corresponding compound was performed. The magnetization hysteresis loops are expounded to be the product of superconducting Eu-123 grains and magnetic Eu2+ ions. The peak effect on the magnetization curves was described by the extended critical state model. Scaling of the pinning force was found such that the peak position is proportional to the irreversibility field H irr and the maximum pinning force is proportional to H 2irr .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908 (1987)

    Article  Google Scholar 

  2. R.J. Cava, J.J. Krajewski, W.F. Peck Jr, B. Battelog, L.W. Rupp Jr, R.M. Fleming, A.C.W.P. James, P. Marsh, Nature 336, 660 (1988)

    Article  Google Scholar 

  3. M. Kato, M. Nakanishi, T. Miyano, T. Shimizi, M. Kakihana, K. Kosuge, J. Solid State Chem. 139, 266 (1998)

    Article  Google Scholar 

  4. F. Abbattista, M. Vallino, D. Mazza Mat, Chem. Phys. 21, 521 (1989)

    Google Scholar 

  5. J.-Y. Genoud, T. Graf, G. Triscone, A. Junod, J. Muller, Phys. C 192, 137 (1992)

    Article  Google Scholar 

  6. J.Y. Juang, M.C. Hsieh, C.W. Luo, T.M. Uen, K.H. Wu, Y.S. Gou, Phys. C 329, 45 (2000)

    Article  Google Scholar 

  7. M.P. Oomen, M. Leghissa, B. Utz, H.W. Neumuller, Mater. Res. Soc. Symp. Proc. 3, 137 (2004)

    Google Scholar 

  8. X. Song, Z. Chen, S. Kim, D.M. Feldmann, D. Larbalestier, J. Reeves, Y. Xie, V. Selvamanickam, Appl. Phys. Lett. 88, 212508 (2006)

    Article  Google Scholar 

  9. W.G. Suharta, S. Suasmoro, S. Pratapa, Darminto, AIP conference proceedings. 1555, 62 (2013)

  10. P.N. Barnes, J.W. Kell, B.C. Harrison, T.J. Haugan, C.V. Varanasi, M. Rane, F. Ramos, Appl. Phys. Lett. 89, 012503 (2006)

    Article  Google Scholar 

  11. M.I. Petrov, Yu.S. Gokhfeld, D.A. Balaev, S.I. Popkov, A.A. Dubrovskiy, D.M. Gokhfeld, K.A. Shaykhutdinov, Supercond. Sci. Technol. 21, 085015 (2008)

    Google Scholar 

  12. W.H. Fietz, C. Barth, S. Drotziger, W. Goldacker, R. Heller, S.I. Schlachter, K.-P. Weiss, Fusion Eng. Des. 88, 440 (2013)

    Article  Google Scholar 

  13. Y. Ishii, T. Akasaka, Y. Kinemura, H. Ogino, S. Horii, J. Shimoyama, K. Kishio, J. Phys. Conf. Ser. 234, 012018 (2010)

    Article  Google Scholar 

  14. G.P. Mikitik, E.H. Brandt, Phys. Rev. B 64, 184514 (2001)

    Article  Google Scholar 

  15. G. Pasquini, V. Bekeris, Supercond. Sci. Technol. 19, 671 (2006)

    Article  Google Scholar 

  16. Y. Li, L. Cui, G. Cao, Q. Ma, C. Tang, Y. Wang, L. Wi, Y.Z. Zhang, Z.X. Zhao, E. Baggio-Saitovitch, Phys. C 314, 55 (1999)

    Article  Google Scholar 

  17. A. Weibel, R. Bouchet, F. Boulc’h, P. Knauth, Chem. Mater. 17, 2378 (2005)

    Article  Google Scholar 

  18. V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012)

    Article  Google Scholar 

  19. H. Lei, K. Wang, R. Hu, H. Ryu, M. Abeykoon, E.S. Bozin, C. Petrovic, Sci. Technol. Adv. Mater. 13, 054305 (2012)

    Article  Google Scholar 

  20. H. Peng, H. Song, B. Chen, S. Lu, S. Huang, Chem. Phys. Lett. 370, 485 (2003)

    Article  Google Scholar 

  21. D.M. Gokhfeld, D.A. Balaev, M.I. Petrov, S.I. Popkov, K.A. Shaykhutdinov, V.V. Valkov, J. Appl. Phys. 109, 033904 (2011)

    Article  Google Scholar 

  22. D.M. Gokhfeld, J. Supercond. Nov. Magn. 26, 281 (2013)

    Article  Google Scholar 

  23. E. Altin, D.M. Gokhfeld, S.V. Komogortsev, S. Altin, M.E. Yakinci, J. Mater. Sci: Mater. Electron. 24, 1341 (2013)

    Google Scholar 

  24. R. Lal, Phys. C 470, 281 (2010)

    Article  Google Scholar 

  25. Kh.A. Ziq, P.C. Canfield, J.E. Ostenson, D.K. Finnemore, Phys. Rev. B 60, 3603 (1999)

    Google Scholar 

  26. C. Hughes, D. Dew-Hughes, Philos. Mag. 30, 293 (1974)

    Article  Google Scholar 

  27. E.J. Kramer, J. Appl. Phys. 44, 1360 (1973)

    Article  Google Scholar 

  28. V. Sandu, Mod. Phys. Lett. B 26, 1230007 (2012)

    Article  Google Scholar 

  29. M.R. Koblischka, A.J.J. van Dalen, T. Higuchi, S.I. Yoo, M. Murakami, Phys. Rev. B 58, 2863 (1998)

    Article  Google Scholar 

  30. B. Rosenstein, B.Ya. Shapiro, I. Shapiro, Y. Bruckental, A. Shaulov, Y. Yeshurun, Phys. Rev. B 72, 144512 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Gokhfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altin, E., Gokhfeld, D.M., Demirel, S. et al. Vortex pinning and magnetic peak effect in Eu(Eu,Ba)2.125Cu3Ox . J Mater Sci: Mater Electron 25, 1466–1473 (2014). https://doi.org/10.1007/s10854-014-1753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1753-1

Keywords

Navigation