One-step hydrothermal synthesis of carbon@Fe3O4 nanoparticles with high adsorption capacity

  • Tao Chen
  • Xueqiang Zhang
  • Jing Qian
  • Songjun Li
  • Xiaohua Jia
  • Hao-Jie Song
Article

Abstract

The magnetic carbon@Fe3O4 nanoparticles have been fabricated by a simple one-step hydrothermal method and applied as adsorbents for removal of organic dyes such as Congo red from aqueous solution. The prepared products were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectra, thermo-gravimetric analysis, nitrogen adsorption–desorption isotherms, UV–vis spectrum, and vibrating sample magnetometer. The adsorption performances of the products were tested with removal of Congo red from aqueous solution. The carbon@Fe3O4 nanoparticles possess high adsorption capacity and excellent magnetic separability by an external magnetic field, which is attributed to its high specific surface area providing more surface active sites.

References

  1. 1.
    Y.Z. Chen, H.D. She, X.Z. Chen, K. Zhang, Z.Y. Wang, D.L. Peng, Structure, optical and magnetic properties of Ni@Au and Au@Ni nanoparticles synthesized via non-aqueous approaches. J. Mater. Chem. 22, 2757–2765 (2012)CrossRefGoogle Scholar
  2. 2.
    X.B. Liu, H.L. Tang, Z. Ma, J.C. Zhong, J. Yang, R. Zhao, Effect of surface modification on the dielectric properties of PEN nanocomposites based on double-layer core/shell-structured BaTiO3 nanoparticles. Colloids Surf. A 384, 311–317 (2011)CrossRefGoogle Scholar
  3. 3.
    D. Muraca, S.K. Sharma, L.M. Socolovsky, A. de Siervo, G. Lopes, K.R. Pirota, Influence of silver concentrations on structural and magnetic properties of Ag–Fe3O4 heterodimer nanoparticles. J. Nanosci. Nanotechnol. 12, 6961–6967 (2012)CrossRefGoogle Scholar
  4. 4.
    X.W. Liu, D.S. Wang, Y.D. Li, Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 7, 448–466 (2012)CrossRefGoogle Scholar
  5. 5.
    J. Kim, Y. Piao, T. Hyeon, Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372–390 (2009)CrossRefGoogle Scholar
  6. 6.
    H. Zeng, S.H. Sun, Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv. Funct. Mater. 18, 391–400 (2008)CrossRefGoogle Scholar
  7. 7.
    S. Qadri, A. Ganoe, Y. Haik, Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. J. Hazard. Mater. 169, 318–323 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Qu, F. Huang, S. Yu, G. Chen, J. Kong, Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J. Hazard. Mater. 160, 643–647 (2008)CrossRefGoogle Scholar
  9. 9.
    R.D. Ambashta, M. Sillanpää, Water purification using magnetic assistance: a review. J. Hazard. Mater. 180, 38–49 (2010)CrossRefGoogle Scholar
  10. 10.
    Y. Liu, S. Guo, Z. Zhang, W. Huang, D. Baigl, M. Xie, Y. Chen, D. Pang, A micropillar-integrated smart microfluidic device for specific capture and sorting of cells. Electrophoresis 28, 4713–4722 (2007)CrossRefGoogle Scholar
  11. 11.
    X.P. Zhang, W.Q. Jiang, Y.F. Zhou, S.H. Xuan, C. Peng, L.H. Zong, X.L. Gong, Magnetic recyclable Ag catalysts with a hierarchical nanostructure. Nanotechnology 22, 375701–375707 (2011)CrossRefGoogle Scholar
  12. 12.
    J.P. Ge, Q. Zhang, T.R. Zhang, Y.D. Yin, Core-satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. Int. Ed. 120, 9056–9060 (2008)CrossRefGoogle Scholar
  13. 13.
    Z.Y. Zhang, J.L. Kong, Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater. 193, 325–329 (2011)CrossRefGoogle Scholar
  14. 14.
    D.V. Szabo, D. Vollath, Nanocomposites from coated nanoparticles. Adv. Mater. 11, 1313–1316 (1999)CrossRefGoogle Scholar
  15. 15.
    F. Dumitrache, I. Morjan, R. Alexandrescu, R.E. Morjan, I. Voicu, I. Sandu, I. Soare, M. Ploscaru, C. Fleaca, V. Ciupina, G. Prodan, B. Rand, R. Brydson, A. Woodword, Nearly monodispersed carbon coated iron nanoparticles for the catalytic growth of nanotubes/nanofibres. Diam. Relat. Mater. 13, 362–370 (2004)CrossRefGoogle Scholar
  16. 16.
    C. Zhang, Z.L. Mo, P. Zhang, C. Feng, R.B. Guo, Facile synthesis of porous carbon@Fe3O4 composites and their applications in wastewater treatment. Mater. Lett. 106, 107–110 (2013)CrossRefGoogle Scholar
  17. 17.
    Z.F. Wang, H.S. Guo, Y.L. Yu, N.Y. He, Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction. J. Magn. Magn. Mater. 302, 397–404 (2006)CrossRefGoogle Scholar
  18. 18.
    J. Zheng, Z.Q. Liu, X.S. Zhao, M. Liu, X. Liu, W. Chu, One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes. Nanotechnology 23, 165601–165608 (2012)CrossRefGoogle Scholar
  19. 19.
    W.J. Ren, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou, Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B 69, 138–144 (2007)CrossRefGoogle Scholar
  20. 20.
    J.Q. Xu, W. Chu, S.Z. Luo, Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability. J. Mol. Catal. A 256, 48–56 (2006)CrossRefGoogle Scholar
  21. 21.
    Y. Li, T.H. Leng, H.Q. Lin, C.H. Deng, X.Q. Xu, N. Yao, P.Y. Yang, X.M. Zhang, Preparation of Fe3O4@ZrO2 core–shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. J. Proteome Res. 6, 4498–4510 (2007)CrossRefGoogle Scholar
  22. 22.
    Y. Li, X.Q. Xu, D.W. Qi, C.H. Deng, P.Y. Yang, X.M. Zhang, Novel Fe3O4@TiO2 core–shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. J. Proteome Res. 7, 2526–2538 (2008)CrossRefGoogle Scholar
  23. 23.
    W. Chu, P.A. Chernavskii, L. Gengembre, G.A. Pankina, P. Fongarland, A.Y. Khodakov, Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts. J. Catal. 252, 215–230 (2007)CrossRefGoogle Scholar
  24. 24.
    M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 13, 3169–3183 (2001)CrossRefGoogle Scholar
  25. 25.
    X.H. Jia, H.J. Song, C.Y. Min, Hydrothermal synthesis of flower-like TiO2 nanocrystals/graphene oxide nanocomposites. Appl. Phys. A 339, 7674–7677 (2013)Google Scholar
  26. 26.
    A. Sari, M. Tuzen, D. Citak, M. Soylak, Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J. Hazard. Mater. 149, 283–291 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tao Chen
    • 1
  • Xueqiang Zhang
    • 1
  • Jing Qian
    • 1
  • Songjun Li
    • 1
  • Xiaohua Jia
    • 2
  • Hao-Jie Song
    • 1
  1. 1.School of Materials Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations