Skip to main content
Log in

Morphology controlled Ag@SiO2 core–shell nanoparticles by ascorbic acid reduction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Morphology controlled Ag@SiO2 core–shell nanoparticles (NPs) were synthesized by using ascorbic acid as reductant, cetyltrimethylammonium bromide as stabilizer followed by silica coating with tetraethylorthosilicate. The effect of NaOH added amount on shape and size of Ag@SiO2 core–shell NPs was investigated. X-ray diffraction result confirmed the formation of crystalline Ag core with amorphous silica shell. In the absence of NaOH, a mixed phase of Ag, Ag2O and AgBr was formed due to incomplete reduction of Ag+ ions. Surface plasmon band of Ag NPs was blue-shifted with increasing NaOH amount, whereas red-shifted after silica coating. Transmission electron microscope analysis confirmed the formation of 25–55 nm Ag NPs with 4–35 nm silica shell in Ag@SiO2 core–shell NPs. The size of Ag NPs was decreased while shell thickness increased with increasing NaOH amount. Higher amount (2.5 ml) of NaOH leads to multi core oval shape Ag@SiO2 core–shell NPs.

Graphical Abstract

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.W. Olsen, Z.H. Kafafi, J. Am. Chem. Soc. 113, 7758–7760 (1991)

    Article  Google Scholar 

  2. G. Peto, G.L. Molnar, Z. Paszti, O. Geszti, A. Beek, L. Guczi, Mater. Sci. Eng., C 19, 95–99 (2002)

    Article  Google Scholar 

  3. N.R. Jana, T.K. Sau, T. Pal, J. Phys. Chem. B 103, 115–121 (1999)

    Article  Google Scholar 

  4. S. Phadtare, A. Kumar, V.P. Vonod, C. Dash, D.V. Palaskar, M. Rao, P.G. Shukla, S. Sivaram, M. Sastry, Chem. Mater. 15, 1944–1949 (2003)

    Article  Google Scholar 

  5. L.N. Lewis, Chem. Rev. 93, 2693–2730 (1993)

    Article  Google Scholar 

  6. K. Aslan, M. Wu, J.R. Lakowicz, C.D. Geddes, J. Am. Chem. Soc. 129, 1524–1525 (2007)

    Article  Google Scholar 

  7. B.P. Bastakoti, S. Guragain, S. Yusa, K. Nakashima, RSC Adv. 2, 5938–5940 (2012)

    Article  Google Scholar 

  8. H.J. Jeon, S.C. Yi, S.G. Oh, Biomaterials 24, 4921–4928 (2003)

    Article  Google Scholar 

  9. R.T. Tom, A.S. Nair, N. Singh, M. Aslam, C.L. Nagendra, R. Philip, K. Vijayamohanan, T. Pradeep, Langmuir 19, 3439–3445 (2003)

    Article  Google Scholar 

  10. K.P. Velikov, G.E. Zegers, A.V. Blaaderen, Langmuir 19, 1384–1389 (2003)

    Article  Google Scholar 

  11. X.M. Sun, Y.D. Li, Langmuir 21, 6019–6024 (2005)

    Article  Google Scholar 

  12. L. Quaroni, G. Chumanov, J. Am. Chem. Soc. 121, 10642–10643 (1999)

    Article  Google Scholar 

  13. T. Ung, L.M. Liz-Marza′n, P. Mulvaney, Langmuir 14, 3740–3748 (1998)

    Article  Google Scholar 

  14. P. Mulvaney, Langmuir 12, 788–800 (1996)

    Article  Google Scholar 

  15. L.M. Liz-Marza′n, M. Giersig, P. Mulvaney, Langmuir 12, 4329–4335 (1996)

    Article  Google Scholar 

  16. L. Guo, A. Guan, X. Lin, C. Zhang, G. Chen, Talanta 82, 1696–1700 (2010)

    Article  Google Scholar 

  17. L.W. Jang, T. Sahoo, D.W. Jeon, M. Kim, J.W. Jeon, D.S. Jo, M.K. Kim, Y.T. Yu, A.Y. Polyakov, I.H. Lee, App. Phys. Lett. 99, 2511–2514 (2011)

    Google Scholar 

  18. L.J. Sherry, S.H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y. Xia, Nano Lett. 5, 2034–2038 (2005)

    Article  Google Scholar 

  19. B.J. Wiley, S.H. Im, Z.Y. Li, J. McLellan, A. Siekkinen, Y. Xia, J. Phys. Chem. B 110, 15666–15675 (2006)

    Article  Google Scholar 

  20. L. Lu, A. Kobayashi, K. Tawa, Y. Ozaki, Chem. Mater. 18, 4894–4901 (2006)

    Article  Google Scholar 

  21. M. Maillard, P. Huang, L. Brus, Nano Lett. 3, 1611–1615 (2003)

    Article  Google Scholar 

  22. J. Hu, Q. Chen, Z. Xie, G. Han, R. Wang, B. Ren, Y. Zhang, Z. Yang, Z. Tian, Adv. Funct. Mater. 14, 183–189 (2004)

    Article  Google Scholar 

  23. C. Ni, P.A. Hassan, E.W. Kaler, Langmuir 21, 3334–3337 (2005)

    Article  Google Scholar 

  24. J. Turkevich, P.C. Stevenson, J. Hillier Discuss. Faraday Soc. 11, 55–75 (1951)

    Article  Google Scholar 

  25. Z.S. Pillai, P.V. Kamat, J. Phys. Chem. B 108, 945–951 (2004)

    Article  Google Scholar 

  26. P.C. Lee, D. Meisel, J. Phys. Chem. 86, 3391–3395 (1982)

    Article  Google Scholar 

  27. I. Sondi, D.V. Goia, E. Matijevic, J. Colloid Interface Sci. 260, 75–81 (2003)

    Article  Google Scholar 

  28. J.A. Creighton, C.G. Blatchford, M.J. Albrecht, Chem. Soc. Faraday Trans. 75, 790–798 (1979)

    Article  Google Scholar 

  29. T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-Sayed, Science 272, 1924–1925 (1996)

    Article  Google Scholar 

  30. X. Dong, X. Ji, H. Wu, L. Zhao, J. Li, W. Yang, J. Phys. Chem. C 113, 6573–6576 (2009)

    Article  Google Scholar 

  31. Y. Qin, X. Ji, J. Jing, H. Liu, H. Wu, W. Yang, Colloids Sur. A 372, 172–176 (2010)

    Article  Google Scholar 

  32. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62–69 (1968)

    Article  Google Scholar 

  33. B. Aswathy, G.S. Avadhani, I.S. Sumithra, S. Suji, G. Sony, J. Mol. Liq. 159, 165–169 (2011)

    Article  Google Scholar 

  34. L. Kuai, B. Geng, X. Chen, Y. Zhao, Y. Luo, Langmuir 26, 18723–18727 (2010)

    Article  Google Scholar 

  35. D.V. Goia, J. Mater. Chem. 14, 451–458 (2004)

    Article  Google Scholar 

  36. K.S. Chou, Y.C.H. Lu, H.H. Lee, Mater. Chem. Phys. 94, 429–433 (2005)

    Article  Google Scholar 

  37. D. Pontoni, T. Narayanan, A.R. Rennie, Langmuir 18, 56–59 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by (a) BK21 plus program from Ministry of Education and Human-Resource Development and (b) National Research Foundation (NRF) grant funded by the Korea government (MEST) (NRF 2010-0019626, 2012R1A2A2A01006787).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon-Tae Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, S., Rai, P., Majhi, S.M. et al. Morphology controlled Ag@SiO2 core–shell nanoparticles by ascorbic acid reduction. J Mater Sci: Mater Electron 25, 1156–1161 (2014). https://doi.org/10.1007/s10854-013-1702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1702-4

Keywords

Navigation