Skip to main content

Micro-patterned nanoscale Au films on PMMA: fabrication and effect of PMMA dewetting on Au patterning

Abstract

Patterned metallic thin films have attracted a lot of attention, in recent years, due to their wide technological applications. On the basis of this fact, in the present work, we illustrate a simple, versatile, and low-cost methodology to prepare surface micro-patterns in nanoscale deposited Au films. The methodology is based on the following steps: (a) to perform nanoscale Au film depositions assisted by micrometric templates to obtain the deposited Au film micrometric patterned in specific and desired ways (micrometric squares, hexagons, …), and (b) by low-temperature thermal processes (<300 °C) to induce a dewetting process of the PMMA to guide specific patterning effects in the top nanoscale Au film. In this approach, the Au surface pattern order is established by the template confined deposition on a micrometric scale while the realization and control of the Au surface pattern is given by the control of the dewetting process of the underlaying substrate, without invoking high temperature thermal processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Blackman J (ed), Metallic nanoparticles, in Handbook of Metal Physics (P. Misra, series Editor) (Elsevier, Amsterdam, 2009)

  2. 2.

    D.L. Feldheim, C.A. Foss Jr (eds.), Metallic Nanoparticles: Synthesis, Characterization, and Applications (Marcel Dekker, New York, 2002)

    Google Scholar 

  3. 3.

    G.P. Zhigal’skii, B.K. Jones, Physical Properties of Thin Metal Films (Taylor & Francis, New York, 2003)

    Google Scholar 

  4. 4.

    A.L. Giermann, C.V. Thompson, Appl. Phys. Lett. 86, 121903 (2005)

    Article  Google Scholar 

  5. 5.

    Y.J. Oh, C.A. Ross, Y.S. Jung, Y. Wang, C.V. Thompson, Small 5, 860 (2009)

    Article  Google Scholar 

  6. 6.

    D. Kim, A.L. Giermann, C.V. Thompson, Appl. Phys. Lett. 95, 251903 (2009)

    Article  Google Scholar 

  7. 7.

    J. Zhang, B. Yang, Adv. Funct. Mater. 20, 3411 (2010)

    Article  Google Scholar 

  8. 8.

    J. Ye, C.V. Thompson, Phys. Rev. B 82, 193408 (2010)

    Article  Google Scholar 

  9. 9.

    J. Ye, C.V. Thompson, Adv. Mater. 23, 1567 (2011)

    Article  Google Scholar 

  10. 10.

    D. Wang, P. Schaaf, J. Mater. Sci. 47, 1605 (2012)

    Article  Google Scholar 

  11. 11.

    D. Wang, P. Schaaf, J. Mater. Sci.: Mater. Elec. 22, 1067 (2011)

    Google Scholar 

  12. 12.

    J. Joo, B.Y. Chow, J.M. Jacobson, Nano Lett. 6, 2021 (2006)

    Article  Google Scholar 

  13. 13.

    K. Salaita, Y. Wang, J. Fragala, R.A. Vega, C. Liu, C.A. Mirkin, Angew. Chem. Int. Ed. 45, 7220 (2006)

    Article  Google Scholar 

  14. 14.

    Y. Choi, S. Hong, L.P. Lee, Nano Lett. 9, 3726 (2009)

    Article  Google Scholar 

  15. 15.

    S.Y. Choe, P.R. Krauss, P.J. Renstrom, Science 272, 85 (1996)

    Article  Google Scholar 

  16. 16.

    F. Ruffino, V. Torrisi, G. Marletta, M.G. Grimaldi, J. Appl. Phys. 112, 124316 (2012)

    Article  Google Scholar 

  17. 17.

    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Article  Google Scholar 

  18. 18.

    L. Léger, J.F. Joanny, Rep. Prog. Phys. 55, 431 (1992)

    Article  Google Scholar 

  19. 19.

    M. Geoghegan, G. Krausch, Prog. Polym. Sci. 28, 261 (2003)

    Article  Google Scholar 

  20. 20.

    P. Müller-Buschbaum, J. Phys, Condens. Matter. 15, R1549 (2003)

    Article  Google Scholar 

  21. 21.

    G. Reiter, Phys. Rev. Lett. 68, 75 (1992)

    Article  Google Scholar 

  22. 22.

    G. Reiter, Langmuir 9, 1344 (1993)

    Article  Google Scholar 

  23. 23.

    G. Reiter, Phys. Rev. Lett. 87, 186101 (2001)

    Article  Google Scholar 

  24. 24.

    A. Sharma, R. Khanna, Phys. Rev. Lett. 81, 3463 (1998)

    Article  Google Scholar 

  25. 25.

    H. Kaya, B. Jérôme, Eur. Phys. J. E 12, 383 (2003)

    Article  Google Scholar 

  26. 26.

    A. Münch, B. Wagner, Phys. D 209, 178 (2005)

    Article  Google Scholar 

  27. 27.

    P. Volodin, A. Kondyurin, J. Phys. D Appl. Phys. 41, 065307 (2008)

    Article  Google Scholar 

  28. 28.

    A. Sehgal, V. Ferreiro, J.F. Douglas, E.J. Amis, A. Karim, Langmuir 18, 7041 (2002)

    Article  Google Scholar 

  29. 29.

    K. Kargupta, A. Sharma, Phys. Rev. Lett. 86, 4536 (2001)

    Article  Google Scholar 

  30. 30.

    R. Mukherjee, D. Bandyopadhyay, A. Sharma, Soft Matter 4, 2086 (2008)

    Article  Google Scholar 

  31. 31.

    S. Roy, R. Mukherjee, ACS Appl. Mater. Interfaces 4, 5375 (2012)

    Article  Google Scholar 

  32. 32.

    K.Y. Suh, J. Park, H.H. Lee, J. Chem. Phys. 116, 7714 (2002)

    Article  Google Scholar 

  33. 33.

    J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, D.H. Kim, Langmuir 23, 2326 (2007)

    Article  Google Scholar 

  34. 34.

    B. Kim, D.Y. Ryu, Macromolecules 42, 7919 (2009)

    Article  Google Scholar 

  35. 35.

    D. Up Ahn, Y. Ding, Soft Matter 7, 3794 (2011)

    Article  Google Scholar 

  36. 36.

    S. Roy, D. Biswas, N. Salunke, A. Das, P. Vutukuri, R. Singh, R. Mukherjee, Macromolecules 46, 935 (2013)

    Article  Google Scholar 

  37. 37.

    J. Ye, C.V. Thompson, Adv. Mater. 23, 1567 (2011)

    Article  Google Scholar 

  38. 38.

    A.L. Giermann, C.V. Thompson, Appl. Phys. Lett. 86, 121903 (2005)

    Article  Google Scholar 

  39. 39.

    S. Yang, F. Xu, S. Ostendorp, G. Wilde, H. Zhao, Y. Lei, Adv. Funct. Mater. 21, 2446 (2011)

    Article  Google Scholar 

  40. 40.

    F. Ruffino, V. Torrisi, G. Marletta, M.G. Grimaldi, Appl. Phys. A 103, 939 (2011)

    Article  Google Scholar 

  41. 41.

    V. Zaporojtchenko, T. Strunskus, J. Erichsen, F. Faupel, Macromolecules 34, 1125 (2001)

    Article  Google Scholar 

  42. 42.

    C.E. Wilkes, J.W. Summers, C.D. Daniels (eds.), PVC Handbook (Hanser Gardner Publications, Cincinatti, 2005)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian project PON01_01725 “Nuove tecnologie fotovoltaiche per sistemi intelligenti integrati in edifici”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Ruffino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruffino, F., Torrisi, V., Marletta, G. et al. Micro-patterned nanoscale Au films on PMMA: fabrication and effect of PMMA dewetting on Au patterning. J Mater Sci: Mater Electron 25, 1138–1147 (2014). https://doi.org/10.1007/s10854-013-1701-5

Download citation

Keywords

  • Scanning Electron Microscopy Image
  • PMMA
  • PMMA Layer
  • Dewetting Process
  • Hole Width