Skip to main content

Advertisement

Log in

Dye-sensitized solar cells based on ZnO nanoflowers and TiO2 nanoparticles composite photoanodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanoflowers were synthesized by low temperature solution-phase method. ZnO nanoflowers/TiO2 nanoparticles composite photoanodes with various mass ratios were prepared on transparent conductive fluorine-doped tin oxide substrates by doctor-blade technique. The dye-sensitized solar cells (DSSCs) were assembled. The morphology characteristics of ZnO nanoflowers and ZnO/TiO2 composite photoanodes have been analyzed by scanning electron microscopy. The effect of the ZnO nanoflowers/TiO2 nanoparticles mass ratio on the performance of DSSCs was systematically investigated by I–V characteristics and electrochemical impedance spectroscopy. Results show that the conversion efficiency of the dye-sensitized solar cell with a ZnO/TiO2 mass ratio of 25:75 was increased by about 35 % compared to that of pure TiO2-based solar cell. Addition of ZnO nanoflowers can enhance the light harvesting and improve electron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.K. Nazeeruddin, F.D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 127, 16835 (2005)

    Article  Google Scholar 

  2. P. Atienzar, T. Ishwara, B.N. Illy, M.P. Ryan, B.C. O’Regan, J.R. Durrant, J. Nelson, J. Phys. Chem. Lett. 1, 708 (2010)

    Article  Google Scholar 

  3. M. Quintana, T. Edvinsson, A. Hagfeldt, G. Boschloo, J. Phys. Chem. C 111, 1035 (2007)

    Article  Google Scholar 

  4. Z. Dong, X. Lai, J.E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang, Z. Tang, L. Jiang, Adv. Mater. 24, 1046 (2012)

    Article  Google Scholar 

  5. Z. Li, Y. Zhou, G. Xue, T. Yu, J. Liu, Z. Zou, J. Mater. Chem. 22, 14341 (2012)

    Article  Google Scholar 

  6. L.Y. Chen, Y.T. Yin, RSC Adv. 3, 8480 (2013)

    Article  Google Scholar 

  7. R.C. Pawar, J.S. Shaikh, N.L. Tarwal, M.M. Karanjkar, P.S. Patil, J. Mater. Sci.: Mater. Electron. 23, 349 (2012)

    Google Scholar 

  8. E. Galoppini, J. Rochford, H.H. Chen, G. Saraf, Y.C. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B 110, 16159 (2006)

    Article  Google Scholar 

  9. Z.S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coord. Chem. Rev. 248, 1381 (2004)

    Article  Google Scholar 

  10. G. Rothenberger, P. Comte, M. Grätzel, Sol. Energy Mater. Sol. Cells 58, 321 (1999)

    Article  Google Scholar 

  11. S. Muduli, O. Game, V. Dhas, K. Vijayamohanan, K.A. Bogle, N. Valanoor, S.B. Ogale, Sol. Energy 86, 1428 (2012)

    Article  Google Scholar 

  12. L.Y. Lin, C.P. Lee, M.H. Yeh, A. Baheti, R. Vittal, K.R.J. Thomas, K.C. Ho, J. Power Sour. 215, 122 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We are gratefully acknowledge the financial support of the projects from the National Natural Science of China (Grant No. 51202037) and the projects from the Science and Technology Department of Guangdong Province (Grant No. 2008B0108 00004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixiang Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Wei, A., Zhao, Y. et al. Dye-sensitized solar cells based on ZnO nanoflowers and TiO2 nanoparticles composite photoanodes. J Mater Sci: Mater Electron 25, 1122–1126 (2014). https://doi.org/10.1007/s10854-013-1698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1698-9

Keywords

Navigation