Skip to main content

Advertisement

Log in

Conducting polymer and reduced graphene oxide Langmuir–Blodgett films: a hybrid nanostructure for high performance electrode applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we prepared a reduced graphene oxide (RGO)/poly(3,4-ethylenedioxythiophene) (PEDOT) hybrid composite with well defined nanostructure. The graphene oxide (GO) was first deposited on substrate through the Langmuir–Blodgett (LB) deposition, which provided a tunable and ordered GO arrangement on substrate. Then the GO LB films were reduced to RGO by following thermal treatment, and a ultrathin conducting polymer (CP) PEDOT was directly coated on RGO through a vapor phase polymerization process. The RGO/PEDOT nanocomposite exhibits excellent electrical conductivity about 377.2 S/cm. Electrochemical activity investigation revealed that this nanocomposite exhibits 213 F/g high specific capacitance at a 0.5 A/g current density and shows better capacitance retention rate than pure PEDOT. The detailed study also confirmed that the arrangement of RGO shows distinct influence on the electrical and electrochemical properties of obtained nanocomposite. Large area RGO/PEDOT nanocomposite with high conductivity and electrochemical activity can be deposited on different substrates. Such high conductivity and electrochemical activity RGO/CP nanocomposite shows promising application future in organic and flexible electrode materials for sustainable energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.J. Heeger, Angew. Chem. Int. Ed. 40, 2591–2611 (2001)

    Article  Google Scholar 

  2. S. Güenes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107, 1324–1338 (2007)

    Article  Google Scholar 

  3. I.S. Chronakis, S. Grapenson, A. Jakob, Polymer 47, 1597–1603 (2006)

    Article  Google Scholar 

  4. H. Bai, G.Q. Shi, Sensors 7, 267–307 (2007)

    Article  Google Scholar 

  5. G.A. Snooka, P. Kaob, A.S. Bestb, J. Power Sources 196, 1–12 (2011)

    Article  Google Scholar 

  6. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 2425–2427 (2002)

    Article  Google Scholar 

  7. G. Rupali, D. Amitabha, Chem. Mater. 12, 608–622 (2000)

    Article  Google Scholar 

  8. R.T. Ahujab, D. Kumarb, Sens. Actuators, B 136, 275–286 (2009)

    Article  Google Scholar 

  9. M.X. Wan, Adv. Mater. 20, 2926–2932 (2008)

    Article  Google Scholar 

  10. A. Malinauskas, J. Malinauskienė, A. Ramanavičius, Nanotechnology 16, 51–62 (2005)

    Article  Google Scholar 

  11. Y. Gao, H.L. Yip, K.S. Chen, K.M. O’Malley, O. Acton, Y. Sun, G. Ting, H.Z. Chen, A.K.Y. Jen, Adv. Mater. 23, 1903–1908 (2011)

    Article  Google Scholar 

  12. Y.F. Xu, Y. Wang, J.J. Liang, Y. Huang, Y.F. Ma, X.J. Wan, Y.S. Chen, Nano Res. 2, 343–348 (2009)

    Article  Google Scholar 

  13. J. Wang, J.H. Dai, T. Yarlagadda, Langmuir 21, 9–12 (2005)

    Article  Google Scholar 

  14. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Nature Nanotech. 3, 327–331 (2008)

    Article  Google Scholar 

  15. T. Kuillaa, S. Bhadrab, D. Yaoa, N.H. Kimc, S. Bosed, J.H. Lee, Prog. Polym. Sci. 35, 1350–1375 (2010)

    Article  Google Scholar 

  16. R. Verdejo, M.M. Bernal, L.J. Romasanta, M.A. Lopez-Manchado, J. Mater. Chem. 21, 3301–3310 (2011)

    Article  Google Scholar 

  17. X.D. Zhuang, Y. Chen, G. Liu, P.P. Li, C.X. Zhu, E.T. Kang, K.G. Noeh, B.J. Zhang, H. Zhu, Y.X. Li, Adv. Mater. 22, 1731–1735 (2010)

    Article  Google Scholar 

  18. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282–286 (2006)

    Article  Google Scholar 

  19. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Nature 448, 457–460 (2007)

    Article  Google Scholar 

  20. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906–3924 (2010)

    Article  Google Scholar 

  21. G. Eda, G. Fanchini, M. Chhowalla, Nature Nanotech. 3, 270–274 (2008)

    Article  Google Scholar 

  22. O.C. Compton, S.T. Nguyen, Small 6, 711–723 (2010)

    Article  Google Scholar 

  23. K.P. Loh, Q.L. Bao, G. Eda, M. Chhowalla, Nature Chem. 2, 1015–1024 (2010)

    Article  Google Scholar 

  24. J.T. Robinson, F.K. Perkins, E.S. Snow, Z.Q. Wei, P.E. Sheehan, Nano Lett. 8, 3137–3140 (2008)

    Article  Google Scholar 

  25. Z.Q. Wei, D.B. Wang, S. Kim, S.Y. Kim, Y.K. Hu, M.K. Yakes, A.R. Laracuente, Z.T. Dai, S.R. Marder, C. Berger, W.P. King, W.A. De Heer, P.E. Sheehan, E. Riedo, Science 328, 1373–1376 (2010)

    Article  Google Scholar 

  26. J.T. Zhang, X.S. Zhao, J. Phys. Chem. C 116, 5420–5426 (2012)

    Article  Google Scholar 

  27. L. Cote, J.R. Cruz-Silva, J.X. Huang, J. Am. Chem. Soc. 131, 11027–11032 (2009)

    Article  Google Scholar 

  28. N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L.M. Dai, J.B. Baek, ACS Nano 6, 1715–1723 (2012)

    Article  Google Scholar 

  29. K.Y. Jo, T.M. Lee, H.J. Choi, J.H. Park, D.J. Lee, D.W. Lee, B.S. Kim, Langmuir 27, 2014–2018 (2011)

    Article  Google Scholar 

  30. L.L. Zhang, S.Y. Zhao, X.N. Tian, X.S. Zhao, Langmuir 26, 17624–17628 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Science Foundation of China (NSFC) (No.61101029 and No.61204098), A Plan for Supporting the New Century Talents (No. NCET-12-0091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajie Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, J., Jiang, Y., Yang, Y. et al. Conducting polymer and reduced graphene oxide Langmuir–Blodgett films: a hybrid nanostructure for high performance electrode applications. J Mater Sci: Mater Electron 25, 1063–1071 (2014). https://doi.org/10.1007/s10854-013-1687-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1687-z

Keywords

Navigation