Skip to main content
Log in

The influence of oxygen pressure on the growth of CuO nanostructures prepared by RF reactive magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper oxide films were prepared by RF reactive magnetron sputtering at different percentages of oxygen pressure in a Ar:O2 reactive gas mixture at room temperature. The structural and optical properties of CuO films were investigated by a field emission scanning electron microscope, Raman spectroscopy, X-ray diffraction and UV–Visible spectrophotometer. The structure of the deposited film changed from a mixture of Cu2O + CuO phases to a pure CuO phase with an increase in oxygen percentage. In addition the crystallite size increased from 12 to 24 nm as the oxygen pressure percentage increased. The optical transmittance significantly increased with the increase of the oxygen pressure percentage and the optical band gap of the film increased from 1.33 to 1.41 eV. The film prepared with 30 and 40 % oxygen pressure showed (002) crystallographic orientation. The I–V characteristic of p-CuO/n-Si heterojunction diode was also found to be dependent on the oxygen pressure percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Gao, X.-J. Liu, J.-S. Zhang, M.-Z. Song, N. Li, J Appl Phys 111(8), 084507 (2012)

    Article  Google Scholar 

  2. N.D. Hoa, S.Y. An, N.Q. Dung, N. Van Quy, D. Kim, Sens Actuators, B 146(1), 239 (2010)

    Article  Google Scholar 

  3. S. Wang, C. Hsiao, S. Chang, K. Lam, K. Wen, S. Hung, S. Young, B. Huang, Sens Actuators, A 171(2), 207 (2011)

    Article  Google Scholar 

  4. S.-L. Cheng, M.-F. Chen, Nanoscale Res Lett 7(1), 1 (2012)

    Article  Google Scholar 

  5. P. Samarasekara, N. Kumara, N.J. Yapa, Phys Condens Matter 18(8), 2417 (2006)

    Article  Google Scholar 

  6. P. Chand, A. Gaur, A. Kumar, Superlattices Microstruct 60, 129 (2013)

    Article  Google Scholar 

  7. M. Abaker, A. Umar, S. Baskoutas, S. Kim, S. Hwang, J Phys D Appl Phys 44(15), 155405 (2011)

    Article  Google Scholar 

  8. N. Serin, A. Yildiz, E. Çam, Ş. Uzun, T. Serin, Superlattices Microstruct 52(4), 759 (2012)

    Article  Google Scholar 

  9. V. Dhanasekaran, T. Mahalingam, R. Chandramohan, J.-K. Rhee, J. Chu, Thin Solid Films 520(21), 6608 (2012)

    Article  Google Scholar 

  10. J.H. Lee, K.H. Jeong, W.H. Cho, W.J. Ho, H.J. Yang, C.S. Kim, J.G. Lee, Met Mater Int 17(6), 917 (2011)

    Article  Google Scholar 

  11. S. Berg, T. Nyberg, Thin Solid Films 476(2), 215 (2005)

    Article  Google Scholar 

  12. G. Beensh-Marchwicka, L. Kròl-Stȩpniewska, M. Słaby, Thin Solid Films 88(1), 33 (1982)

    Article  Google Scholar 

  13. A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan, F. Placido, J Phys D Appl Phys 38(2), 266 (2005)

    Article  Google Scholar 

  14. E. Darezereshki, F. Bakhtiari, J Min Metall Sect B 47(1), 73 (2011)

    Article  Google Scholar 

  15. J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J Raman Spectrosc 30(5), 413 (1999)

    Article  Google Scholar 

  16. D. Schroder, R.N. Thomas, J.C. Swartz, IEEE J Solid-State Circ 13(1), 180 (1978)

    Article  Google Scholar 

  17. J. Tauc, A. Menth, J Non-Cryst Solids 8–10, 569 (1972)

    Article  Google Scholar 

  18. M. Nolan, S.D. Elliott, Phys Chem Chem Phys 8(45), 5350 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nezar G. Elfadill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elfadill, N.G., Hashim, M.R., Chahrour, K.M. et al. The influence of oxygen pressure on the growth of CuO nanostructures prepared by RF reactive magnetron sputtering. J Mater Sci: Mater Electron 25, 262–266 (2014). https://doi.org/10.1007/s10854-013-1581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1581-8

Keywords

Navigation