Structural, vibrational, optical and magnetic properties of sol–gel derived Nd doped ZnO nanoparticles

  • Sunil Chauhan
  • Manoj KumarEmail author
  • Sandeep Chhoker
  • S. C. Katyal
  • V. P. S. Awana


Nd doped ZnO (Zn1-xNdxO, x = 0.0, 0.03, 0.06 and 0.10) nanoparticles were prepared by sol–gel method. Phase identification and effect of Nd ions substitution in ZnO lattice were confirmed by Rietveld analysis of XRD patterns. UV–Visible absorption spectra of pure and Nd doped ZnO nanoparticles showed the variation of the band gap in the range of 3.31–3.26 eV. The FTIR analysis of pure and Nd doped ZnO nanoparticles exhibited similar patterns in Zn/Nd–O bond length as obtained from the Rietveld refinement. Raman analysis confirmed the formation of a wurtzite structure wherein the local structure of ZnO nanoparticles is distorted due to Nd substitution. Magnetization-magnetic field hysteresis curves for pure and Nd doped ZnO nanoparticles revealed diamagnetic and paramagnetic behaviour, respectively. The paramagnetic behaviour of doped ZnO nanoparticles increased with increasing Nd concentration. However, the weak ferromagnetic behaviour of doped ZnO nanoparticles is observed after subtracting paramagnetic components, whereas the ferromagnetic behavior increased up to x = 0.06 samples, which further declined for x = 0.10 sample due to competition between paramagnetic and ferromagnetic ordering. The reduction in the ferromagnetic behavior for x = 0.10 sample indicates that the solubility limit of Nd atoms in ZnO lattice has been reached and paramagnetically coupled Nd atoms increased due to the increasing secondary phases.


Room Temperature Ferromagnetism Longitudinal Optical Transverse Optical Wurtzite Crystal Structure Ethylene Glycol Monomethylether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to Advance Instrumentation Research Facility (AIRF) JNU for TEM and FTIR measurements and DST National facility for magnetic measurements at IIT Delhi. The authors are also thankful to INUP program (IISc Bangalore) for Raman measurements. Sunil Chauhan is thankful to JIIT for providing the teaching assistance.


  1. 1.
    M. Ahmad, J. Zhu, J. Mater. Chem. 21, 599 (2011)CrossRefGoogle Scholar
  2. 2.
    Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.W. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, D.P. Yu, Appl. Phys. Lett. 83, 144 (2003)CrossRefGoogle Scholar
  3. 3.
    Z.L. Wang, J. Song, Science 312, 243 (2006)Google Scholar
  4. 4.
    J.H. Yu, G.M. Choi, Sens. Actu. B 75, 56 (2000)CrossRefGoogle Scholar
  5. 5.
    S.J. Pearton, D.P. Norton, R. Frazier, S.Y. Han, C.R. Abernathy, J.M. Zavada, IEE Proc. Circuits Devices Syst. 152, 312 (2005)CrossRefGoogle Scholar
  6. 6.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Appl. Phys. Lett. 84, 3654 (2004)CrossRefGoogle Scholar
  7. 7.
    F. Zhang, X. Wang, S. Ai, Z. Sun, Q. Wan, Z. Zhu, Y. Xian, L. Jin, K. Yamamoto, Anal. Chim. Acta 519, 155 (2004)CrossRefGoogle Scholar
  8. 8.
    Y.W. Chen, Y.C. Liu, S.X. Lu, C.S. Xu, C.L. Shao, C. Wang, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, J. Chem. Phys. 123, 134701 (2005)CrossRefGoogle Scholar
  9. 9.
    J.S. Jie, G.Z. Wang, X.H. Han, Q.X. Yu, Y. Liao, G.P. Li, J.G. Hou, Chem. Phys. Lett. 387, 466 (2004)CrossRefGoogle Scholar
  10. 10.
    S.Y. Bae, C.W. Na, J.H. Kang, J. Park, J. Phys. Chem. B 109, 2526 (2005)CrossRefGoogle Scholar
  11. 11.
    T. Dietl, J. Phys.: Condens. Matter 19, 2007 (165204)Google Scholar
  12. 12.
    W. Prellier, A. Fouchet, B. Mercey, J. Phys.: Condens. Matter 15B, R1583 (2003)CrossRefGoogle Scholar
  13. 13.
    W. Li, A.I. Frenkel, J.C. Woicik, C. Ni, S. Ismatshah, Phys. Rev. B 72, 155315 (2005)CrossRefGoogle Scholar
  14. 14.
    J. Alaria, M. Venkatesan, J.M. Coey, J. Appl. Phys. 103, 07D123 (2008)CrossRefGoogle Scholar
  15. 15.
    O.D. Jayakumar, C. Sudakar, C. Persson, H.G. Salunke, R. Naik, A.K. Tyagi, Appl. Phys. Lett. 97, 232510 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Gao, H. Zhang, R. Deng, X. Wang, D. Sun, G. Zheng, Appl. Phys. Lett. 89, 123125 (2006)CrossRefGoogle Scholar
  17. 17.
    Y. Liu, W. Luo, R. Li, H. Zhu, X. Chen, Optical Express 17, 9748 (2009)CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, S.X. Lu, W.G. Xu, Envi. Prog. & Sust. Ener. 28, 226 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Dakhel, M. El-Hilo, J. Appl. Phys. 107, 123905 (2010)CrossRefGoogle Scholar
  20. 20.
    B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G. Schütz, P.A. van Aken, E. Goering, B. Baretzky, Phys. Rev. B 79, 205206 (2009)CrossRefGoogle Scholar
  21. 21.
    K. Potzger, S. Zhou, F. Eichhorn, M. Helm, W. Skorupa, A. Mucklich, J. Fassbender, J. Appl. Phys. 99, 63906 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)CrossRefGoogle Scholar
  23. 23.
    T. Tietze, M. Gacic, G. Schütz, G. Jakob, S. Brück, E. Goering, New J. Phys. 10, 55009 (2008)CrossRefGoogle Scholar
  24. 24.
    F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Mater. Sci. Eng., R 62, 1 (2008)CrossRefGoogle Scholar
  25. 25.
    K. Potzger, S. Zhou, Phys. Status Solidi B 246, 1147 (2009)CrossRefGoogle Scholar
  26. 26.
    H. Yoon, J.H. Wu, J.H. Min, J.S. Lee, J.S. Ju, Y.K. Kim, J. Appl. Phys. 111, 7B523 (2010)CrossRefGoogle Scholar
  27. 27.
    J. Qi, Y. Yang, L. Zhang, J. Chi, D. Gao, D. Xue, Scri. Mate. 60, 289 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Singh, J.N.D. Deepthi, R. Ramachandran, M.S.R. Rao, Mate. Lett. 65, 2930 (2011)CrossRefGoogle Scholar
  29. 29.
    J.B. Yi, C.C. Lim, G.Z. Xing, H.M. Fan, L.H. Van, S.L. Huang, K.S. Yang, X.L. Huang, X.B. Qin, B.Y. Wang, T. Wu, L. Wang, H.T. Zhang, X.Y. Gao, T. Liu, A.T.S. Wee, Y.P. Feng, J. Ding, Phys. Rev. Lett. 104, 137201 (2010)CrossRefGoogle Scholar
  30. 30.
    S.J. Chen, K. Suzuki, J.S. Garitaonandia, Appl. Phys. Lett. 95, 172507 (2009)CrossRefGoogle Scholar
  31. 31.
    X.G. Xu, H.L. Yang, Y. Wu, D.L. Zhang, S.Z. Wu, J. Miao, Y. Jiang, X.B. Qin, X.Z. Cao, B.Y. Wang, Appl. Phys. Lett. 97, 232502 (2010)CrossRefGoogle Scholar
  32. 32.
    H. Shi, P. Zhang, S.S. Li, J.B. Xia, J. Appl. Phys. 106, 23910 (2009)CrossRefGoogle Scholar
  33. 33.
    B. Shahmordai, K. Soga, R. Somashekar, K. Byrappa, Nanoscale 2, 1160 (2010)CrossRefGoogle Scholar
  34. 34.
    J. Rodriguez-Carvajal, FullProf: A Rietveld refinement and pattern matching analysis program (Version: April 2008) (Laboratoire Léon Brillouin (CEA-CNRS), France, 2000)Google Scholar
  35. 35.
    D.A.A. Santos, A.D.P. Rocha, M.A. Macêdo, Powd. Diff. Suppl. 23, S36 (2008)CrossRefGoogle Scholar
  36. 36.
    Y. Kim, K. Page, R. Seshadri, Appl. Phys. Lett. 90, 101904 (2007)CrossRefGoogle Scholar
  37. 37.
    L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Cryst. 32, 36 (1999)CrossRefGoogle Scholar
  38. 38.
    W. Badalawa, H. Matsui, T. Osone, N. Hasuike, H. Harima, H. Tabata, J. Appl. Phys. 109, 53502 (2011)CrossRefGoogle Scholar
  39. 39.
    G.K. Williamson, W.H. Hall, Acta Metallur-gica 1, 22 (1953)CrossRefGoogle Scholar
  40. 40.
    S. Kumar, S. Mukherjee, R.K. Singh, S. Chatterjee, A.K. Ghosh, J. Appl. Phys. 110, 103508 (2011)CrossRefGoogle Scholar
  41. 41.
    J. Tauc, Amorphous and liquid semiconductors (Plenum Press, New York, 1974)CrossRefGoogle Scholar
  42. 42.
    T.C. Damen, S.P.S. Pqrtq, B. Tell, Phys. Rev. 142, 570 (1966)CrossRefGoogle Scholar
  43. 43.
    G. Xiong, U. Pal, J.G. Serrano, J. Appl. Phys. 101, 24317 (2007)CrossRefGoogle Scholar
  44. 44.
    M.K. Gupta, B. Kumar, J. Mate, Chem. 21, 14559 (2011)Google Scholar
  45. 45.
    C.A.S. Queiroz, J.R. Matos, M.E. Vasconcellos, A. Abrão, J. Allo. Comp. 344, 32 (2002)CrossRefGoogle Scholar
  46. 46.
    W.M.H. Oo, M.D. McCluskey, A.D. Lalonde, M.G. Norton, Appl. Phys. Lett. 86, 73111 (2005)CrossRefGoogle Scholar
  47. 47.
    M. Ghosh, N. Dilawar, A.K. Bandyopadhyay, A.K. Raychaudhuri, J. Appl. Phys. 106, 84306 (2009)CrossRefGoogle Scholar
  48. 48.
    S.S. Li, Y.M. Hu, J. Phys: Conf. Ser. 266, 12018 (2011)CrossRefGoogle Scholar
  49. 49.
    P.N. Kotru, K.K. Raina, J. Phys. D Appl. Phys. 19, L9 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sunil Chauhan
    • 1
  • Manoj Kumar
    • 1
    Email author
  • Sandeep Chhoker
    • 1
  • S. C. Katyal
    • 1
  • V. P. S. Awana
    • 2
  1. 1.Department of Physics and Material Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Quantum Phenomenon and Applications LaboratoryNational Physical LaboratoryNew DelhiIndia

Personalised recommendations