Effect of solution concentration on the structural, optical and conductive properties of ZnO thin films prepared by sol–gel method

  • Jinru Liu
  • Xiaoru ZhaoEmail author
  • Libing Duan
  • Mengmeng Cao
  • Mengmeng Guan
  • Wenrui Guo


ZnO thin films with different solution concentrations (0.1–0.9 mol/L) were prepared by a simple sol–gel dip-coating technique. X-ray diffraction, ultraviolet–visible spectroscopy, Hall effect measurements and photoluminescence (PL) spectroscopy were employed to investigate the effect of solution concentration on the structural,optical and electrical conductive properties of the ZnO thin films. The results showed that the ZnO thin films preferentially oriented along the (002) direction at higher solution concentration. The careful study of the optical and electrical conductive properties showed that the resistivity decreased monotonously, while the transmittance increased first and then decreased when solution concentrations changed from 0.1 to 0.9 mol/L. Photoluminescence spectra indicated that the defect-related blue emission was increased with the enhancement of solution concentration. The mechanism of the blue emission, and the reasons why high solution concentration was favorable for forming high c-axis oriented ZnO thin films and obtaining low resistivity were also discussed in detail.


Solution Concentration Hall Mobility Blue Emission High Solution Concentration Electrical Conductive Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by National Natural Science Foundation of China (Grant No. 51172186), Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20106102120051), NPU Foundation for Fundamental Research (NPU-FFR-JC201017, JC20100236).


  1. 1.
    C. Klingshirm, Phys. Status Solidi B 71, 547 (1975)CrossRefGoogle Scholar
  2. 2.
    V. Bhosle, J.T. Prater, F. Yang, D. Burk, S.R. Forrest, J. Narayan, J. Appl. Phys. 102, 023501 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Ye, Y. Zhao, L. Tang, L.M. Chen, C.M. Luk, S.F. Yu, S.T. Lee, S.P. Lau, Appl. Phys. Lett. 98, 263101 (2011)CrossRefGoogle Scholar
  4. 4.
    H.B. Zeng, G.T. Duan, Y. Li, S.K. Yang, X.X. Xu, W.P. Cai, Adv. Funct. Mater. 20, 561 (2010)CrossRefGoogle Scholar
  5. 5.
    E.G. Bylander, J. Appl. Phys. 49, 1188 (1978)CrossRefGoogle Scholar
  6. 6.
    K. Vanheusden, C.H. Seager, W.L. Warren, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)CrossRefGoogle Scholar
  7. 7.
    Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998)CrossRefGoogle Scholar
  8. 8.
    D.M. Bangall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70, 2230 (1997)CrossRefGoogle Scholar
  9. 9.
    R.F. Service, Science 276, 895 (1997)CrossRefGoogle Scholar
  10. 10.
    K. Tominaga, T. Takao, A. Fukushima, T. Moriga, I. Nakabayashi, Vacuum 66, 505 (2002)CrossRefGoogle Scholar
  11. 11.
    S. Devi, V.B. Subrahmanyam, S.C. Gadkari, S.K. Gupta, Anal. Chim. Acta 568, 41 (2006)CrossRefGoogle Scholar
  12. 12.
    H.G. Swamy, P.J. Reddy, Semicond. Sci. Technol. 5, 980 (1990)CrossRefGoogle Scholar
  13. 13.
    S.S. Lin, J.L. Huang, Surf. Coat. Technol. 185, 222 (2004)CrossRefGoogle Scholar
  14. 14.
    M. Smirnov, C. Baban, G.I. Rusu, Appl. Surf. Sci. 256, 2405 (2010)CrossRefGoogle Scholar
  15. 15.
    W.T. Lim, C.H. Lee, Thin Solid Films 353, 12 (1999)CrossRefGoogle Scholar
  16. 16.
    Y. Li, L. Xu, X. Li, X. Shen, A. Wang, Appl. Surf. Sci. 256, 4543 (2010)CrossRefGoogle Scholar
  17. 17.
    S.A. Kamaruddin, K.Y. Chan, H.K. Yow, M.Z. Sahdan, H. Saim, D. Knipp, Appl. Phys. A 104, 263 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Mridha, D. Basak, Chem. Phys. Lett. 427, 62 (2006)CrossRefGoogle Scholar
  19. 19.
    L. Xu, G. Zheng, J. Miao, F. Xian, Appl. Surf. Sci. 258, 7760 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Dutta, S. Mridha, D. Basak, Appl. Surf. Sci. 254, 2743 (2008)CrossRefGoogle Scholar
  21. 21.
    S. O’Brien, L.H.K. Koh, G.M. Crean, Thin Solid Films 516, 1391 (2008)CrossRefGoogle Scholar
  22. 22.
    R.E. Marotti, D.N. Guerra, C. Bello, G. Machado, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 82, 85 (2004)CrossRefGoogle Scholar
  23. 23.
    T.P. Rao, M.C. Santhoshkumar, Appl. Surf. Sci. 255, 4579 (2009)CrossRefGoogle Scholar
  24. 24.
    N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth 130, 269 (1993)CrossRefGoogle Scholar
  25. 25.
    M. Saleem, L. Fang, H.B. Ruan, F. Wu, Q.L. Huang, C.L. Xu, C.Y. Kong, Int. J. Phys. Sci. 7, 2971 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Mridha, D. Basak, Mater. Res. Bull. 42, 875 (2007)CrossRefGoogle Scholar
  27. 27.
    D.H. Zhang, Z.Y. Xue, Q.P. Wang, J. Phys. D Appl. Phys. 35, 2837 (2002)CrossRefGoogle Scholar
  28. 28.
    W. Cheng, P. Wu, X. Zou, T. Xiao, J. Appl. Phys. 100, 054311 (2006)CrossRefGoogle Scholar
  29. 29.
    X.Q. Wei, B.Y. Man, M. Liu, C.S. Xue, H.Z. Zhuang, C. Yang. Phys. B 388, 145 (2007)CrossRefGoogle Scholar
  30. 30.
    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)CrossRefGoogle Scholar
  31. 31.
    F. Oba, S.R. Nishitani, S. Isotani, H. Adachi, I. Tanaka, J. Appl. Phys. 90, 824 (2001)CrossRefGoogle Scholar
  32. 32.
    S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)CrossRefGoogle Scholar
  33. 33.
    G.Y. Huang, C.Y. Wang, J.T. Wang, Solid State Commun. 149, 199 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jinru Liu
    • 1
    • 2
  • Xiaoru Zhao
    • 1
    • 2
    Email author
  • Libing Duan
    • 1
    • 2
  • Mengmeng Cao
    • 1
    • 2
  • Mengmeng Guan
    • 1
    • 2
  • Wenrui Guo
    • 1
    • 2
  1. 1.Key Laboratory of Space Applied Physics and ChemistryMinistry of Education of ChinaXi’anPeople’s Republic of China
  2. 2.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations