Skip to main content
Log in

FTIR and dielectric studies of nickel doped potassium hexa-titanate (K2Ti6O13) fine ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric and electrical properties such as relative permittivity \((\varepsilon^{\prime } )\), loss tangent (tanδ), and ac conductivity (σac) have been studied in the temperature range 373–773 K at three different frequencies 100, 200, 400 kHz for doped potassium hexa-titanate (K2Ti6O13) samples. It was observed that dielectric constant and loss tangent decreases while ac conductivity increases with the increase in frequency. The temperature dependent relative permittivity showed a phase transition for all samples. Dielectric loss mechanism was observed to include space charge polarization and dipole orientation. Moreover, electron-hopping conduction was observed to be dominant in the low temperature region, whereas intratunnel ionic conduction prevailed at higher temperatures. Fourier transform infrared spectroscopy analysis was also carried out to identify the chemical bonds present in the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Anderson, A.D. Wadsley, Acta Crys 14, 1245 (1961)

    Article  Google Scholar 

  2. C.Y. Xu, Q. Zhang, H. Zhang, Z. Liang, J Am Chem Soc 127, 11584 (2005)

    Article  CAS  Google Scholar 

  3. R. Dominko, E. Baudrin, P. Umek, Electrochem Comm 8, 673 (2006)

    Article  CAS  Google Scholar 

  4. I. Hofmann, F.A. Müller, Becker, J Euro Ceram Soc 27, 4547 (2007)

    Article  Google Scholar 

  5. B.L. Wang, Q. Chen, Chem Phys Lett 376, 726 (2003)

    Article  CAS  Google Scholar 

  6. D.V. Bavykin, F.C. Walsh, J Phys Chem C 111, 14644 (2007)

    Article  CAS  Google Scholar 

  7. V. Stengl, S. Bakardjieva, J. Subrt, E. Vecernikova, L. Szatmary, M. Klementova, V. Balek, Appl Catal B 63, 20 (2006)

    Article  CAS  Google Scholar 

  8. K. Teshima, K. Yubuta, T. Shimodaira, T. Suzuki, M. Endo, T. Shishido, S. Oishi, Cryst Growth Des 8, 465 (2008)

    Article  CAS  Google Scholar 

  9. Machida M, Ma XW, Yabunaka J, Kiyina J, J Mol Cat Chem 155, 131 (2000)

    Google Scholar 

  10. Shripal, Badhwar S, Maurya D, Kumar J, Tandon RP (2005): Raina KK (Ed), Proceedings of advances in condensed matter physics, Patiala, Allied Publishers, New Delhi, pp 250

  11. S. Shripal, D. Badhwar, J. Maurya, J. Kumar, Mater Sci: Mater Elec 16, 495 (2005)

    Article  CAS  Google Scholar 

  12. R.D. Adams, R. Layland, M. Danot, C. Payen, Polyhed 15, 2567 (1996)

    Article  CAS  Google Scholar 

  13. J. Ramirez-Salgado, P. Fabry, Sens Actuators, B 82, 34 (2002)

    Article  CAS  Google Scholar 

  14. J. Li, Y.C. Zhang, M. Zhang, Mater Lett 79, 136 (2012)

    Article  CAS  Google Scholar 

  15. J. Xie, Y. Zhu, C. Liu, J Mater Sci 38, 3641 (2003)

    Article  CAS  Google Scholar 

  16. J. Ramirez-Salgado, E. Djurado, P. Fabry, J Eur Ceram Soc 24, 2477 (2004)

    Article  CAS  Google Scholar 

  17. Inoue Y, Kubokawa T, Sato K (1990) J Chem Soc Chem Commun 1298

  18. L.M. Torres-Martinez, A. Hernandez, J.C. Luna-Urzua, Adv Tech Mater Proc J (ATM) 6, 184 (2004)

    CAS  Google Scholar 

  19. C. Dussarrat, H.R. Alan, G.C. Mather, L.M. Torres-Martinez, J Mat Chem 7, 2103 (1997)

    Article  CAS  Google Scholar 

  20. A. Hernandez, L.M. Torres-Martinez, W. Ortega, Emerging fields in sol–gel science and technology (Kluwer Academic Publishers, Berlin, 2003)

    Google Scholar 

  21. L. Garza-Tovar, L.M. Torres-Martinez, Mater Sci Forum 486, 57 (2005)

    Article  Google Scholar 

  22. S.V. Vikram, D. Maurya, V.S. Chandel, J Alloy Compd 478, 398 (2009)

    Article  CAS  Google Scholar 

  23. S.V. Vikram, D.M. Phase, V.S. Chandel, J Alloy Comp 489, 700 (2010)

    Article  CAS  Google Scholar 

  24. S.V. Vikram, D. Maurya, D.M. Phase, V.S. Chandel, J Mater Sci: Mater Electron 23, 718 (2012)

    Article  CAS  Google Scholar 

  25. K. Iwauchi, Y. Ikeda, Phys Status Solid 92, 623 (2006)

    Google Scholar 

  26. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, NY, 1971)

    Google Scholar 

  27. M.A. Siddiqui, V.S. Chandel, A. Azam, Appl Surf Sci 258, 7354 (2012)

    Article  CAS  Google Scholar 

  28. M.A. Siddiqui, V.S. Chandel, A. Azam, Asian J Appl Sci 5, 423 (2012)

    Article  CAS  Google Scholar 

  29. B. Li, Z. Shuren, Z. Chaowei, Chinese J Mat Res 22, 433 (2008)

    CAS  Google Scholar 

  30. S.V. Vikram, D.M. Phase, V.S. Chandel, J Mater Sci: Mater Electr 21, 902 (2009)

    Article  Google Scholar 

  31. Z.F. Li, C.L. Wang, W.L. Zhong, J Appl Phys 94, 2548 (2003)

    Article  CAS  Google Scholar 

  32. N. Setter, L.E. Cross, J Mater Sci 15, 2478 (1980)

    Article  CAS  Google Scholar 

  33. Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon, Oxford, pp 87, 286

  34. Bogoroditsky NP, Tareev B (1979) Electr Eng Mater, Mir Publisher, Mascow, 23, 54

  35. Tareev B (1979) Physics of dielectric materials, Mir Publishers, Moscow, Chapter 2 and 3

  36. S. Ogura, K. Sato, Y. Inoue, Phys Chem Chem Phys 2, 2449 (2000)

    Article  CAS  Google Scholar 

  37. S.B. Majumdar, B. Roy, R.S. Katiyar, J Appl Phys 90, 2975 (2001)

    Article  Google Scholar 

  38. T.J. Yang, P.J. Swarti, U. Mohideen, Phys Rev Lett 82, 4106 (1999)

    Article  CAS  Google Scholar 

  39. N.F. Mott, E (Oxford Clarendon Press, A. Davis Electronic process in non crystalline material, 1971)

    Google Scholar 

  40. G. Austin, N.F. Mott, Adv Phys 18, 41 (1969)

    Article  CAS  Google Scholar 

  41. M. Pollock, Philos Mog 23, 519 (1971)

    Article  Google Scholar 

  42. M. Bottger, V.V. Breyksin, Phys Status Solidi B 9, 79 (1976)

    Google Scholar 

  43. M. Pollock, T.H. Geable, Phys Rev 122, 1742 (1961)

    Article  Google Scholar 

  44. Shripal, Premchand Pandey SD, J Mater Sci: Mater Electr 2, 89 (1991)

    Google Scholar 

  45. D. Maurya, J. Kumar, Shripal, J Phys Chem Soli 66, 1614 (2005)

    Article  CAS  Google Scholar 

  46. D. Maurya, J. Kumar, Shripal, J Appl Phys 100, 034103 (2006)

    Article  Google Scholar 

  47. D. Maurya, Premchand, J Alloys Compd 459, 418 (2008)

    Article  CAS  Google Scholar 

  48. G. Goodman, J Am Ceram Soc 46, 48 (1963)

    Article  CAS  Google Scholar 

  49. W. Heywang, Sol State Electr 3, 51 (1961)

    Article  CAS  Google Scholar 

  50. H.K. Lee, J.S. Lee, J.P. Shim, M.J. Shim, Mater Chem Phys 45, 243 (1996)

    Article  CAS  Google Scholar 

  51. J.B. Antonio, G.S. Filho, O.P. Ferreira, B.C. Viana, Chem Soc 20, 1 (2009)

    Google Scholar 

  52. A.J. Eastel, D.J. Udy, High Temp Sci 4, 487 (1972)

    Google Scholar 

  53. Shimizu T, Morita T (1977) J Ceram Soc Jap 85:189

    Google Scholar 

  54. R. Yahyaa, A. Hassan, Z. Aiyub, Mater Sci For 517, 222 (2006)

    Google Scholar 

  55. A. Bamberger, G.M. Begun, Appl Spect 44, 30 (1990)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Asim Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddiqui, M.A., Chandel, V.S., Shariq, M. et al. FTIR and dielectric studies of nickel doped potassium hexa-titanate (K2Ti6O13) fine ceramics. J Mater Sci: Mater Electron 24, 4725–4731 (2013). https://doi.org/10.1007/s10854-013-1466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1466-x

Keywords

Navigation