Skip to main content
Log in

Effect of sintering temperature on the microstructure and electrical properties of zirconium doped barium titanate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free Ba(Zr0.15Ti0.85)O3 (BZT15) ceramics were synthesized by adopting the solid-state synthesis method. The effect of increasing sintering temperature (Ts) in the range of 1,350–1,450 °C on the microstructure, dielectric, polarization, and electric field induced strain of the ceramics was studied. Fine grained (~260 nm) BZT15 ceramics displayed single phase perovskite structure with relative densities >94 % of the theoretical density. Both grain size and shape were influenced by the sintering parameters. With increase in Ts, not only the maximum dielectric constant decreased from 11,412 to 8,734 along with an increase in the degree of diffuseness, but also interestingly the Curie temperatures were found to vary within an interval of 61–73 °C. Optimum sintering temperature has been found resulting in high remnant polarisation and strain in these ceramics. The properties observed are attributed to a contribution from all polar vectors present in coexistent phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Gene, J. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  2. A.J. Moulson, J.M. Herbert, Electroceramics: materials, properties & applications (Chapman & Hall, London, 1990)

    Google Scholar 

  3. B. Jaffe, W. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971)

    Google Scholar 

  4. M.A. Zubair, C. Leach, J. Appl. Phys. 104, 103711 (2008)

    Article  Google Scholar 

  5. Y. He, X. Yebin, T. Liu, C. Zeng, W. Chen, J. Alloys Compd. 509, 904 (2011)

    Article  CAS  Google Scholar 

  6. X. Diez-Betriu, J.E. Garcia, C. Ostos, A.U. Boya, D.A. Ochoa, L. Mestres, R. Perez, Mater. Chem. Phys. 125, 493 (2011)

    Article  CAS  Google Scholar 

  7. A. Lanculescu, Z.V. Mocanu, L.P. Curecheriu, L. Mitoseriu, L. Padurariu, R. Trusca, J. Alloys Compd. 509, 10040 (2011)

    Article  Google Scholar 

  8. H. Chen, C. Yang, F. Chunlin, J. Shi, J. Zhang, W. Leng, J. Mater. Sci.: Mater. Electron. 19, 379 (2008)

    Article  CAS  Google Scholar 

  9. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  10. S.K. Ye, J.Y.H. Fuh, L. Lu, Appl. Phys. Lett. 100, 252906 (2012)

    Article  Google Scholar 

  11. J. Gao, Y. Dezhen Xue, D.W. Wang, L. Zhang, W. Haijun, S. Guo, H. Bao, C. Zhou, W. Liu, S. Hou, G. Xiao, X. Ren, Appl. Phys. Lett. 99, 092901 (2011)

    Article  Google Scholar 

  12. M.L.V. Mahesh, V.V. Bhanu Prasad, A.R. James, J. Electron Mater. (2013, accepted)

  13. M. Deluca, C.A. Vasilescu, A.C. Ianculescu, D.C. Berger, J. Eur. Ceram. Soc. 32, 3551 (2012)

    Article  CAS  Google Scholar 

  14. M.N. Rahaman, Sintering of Ceramics (CRC Press, New York, 2008)

    Google Scholar 

  15. S. Bhaskar Reddy, K. Prasad Rao, M.S. Ramachandra Rao, J. Alloys Compd. 481, 692 (2009)

    Article  Google Scholar 

  16. W. Cai, F. Chunlin, J. Gao, H. Chen, J. Alloys Compd. 480, 870 (2009)

    Article  CAS  Google Scholar 

  17. L. Dong, D.S. Stone, R.S. Lakes, J. Appl. Phys. 111, 084107 (2012)

    Article  Google Scholar 

  18. Y.D. Hou, L.M. Chang, M.K. Zhu, X.M. Song, H. Yan, J. Appl. Phys. 102, 084507 (2007)

    Article  Google Scholar 

  19. C. Ciomaga, M. Viviani, M.T. Buscaglia, V. Buscaglia, L. Mitoseriu, A. Stancu, P. Nanni, J. Eur. Ceram. Soc. 27, 4061 (2007)

    Article  CAS  Google Scholar 

  20. I. Bunget, M. Popescu, Physics of solid dielectrics (Elsevier, New York, 1978)

    Google Scholar 

  21. D. Hennings, A. Schnell, G. Simon, J. Am. Ceram. Soc. 65, 539 (1982)

    Article  CAS  Google Scholar 

  22. G. Schmidt, Ferroelectrics 78, 199 (1988)

    Article  Google Scholar 

  23. X.G. Tang, J. Wang, X.X. Wang et al., Solid State Commun. 131(3–4), 163 (2004)

    Article  CAS  Google Scholar 

  24. K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44, 55 (1982)

    Article  CAS  Google Scholar 

  25. Y. Zhi, C. Ang, R. Guo, A.S. Bhalla, J. Appl. Phys. 92, 1489 (2002)

    Article  Google Scholar 

  26. W. Cai, J. Gao, F. Chunlin, L. Tang, J. Alloys Compd. 487, 668 (2009)

    Article  CAS  Google Scholar 

  27. F. Moura, A.Z. Simoes, B.D. Stojanovic, M.A. Zaghete, E. Longoa, J.A. Varela, J. Alloys Compd. 462, 129 (2008)

    Article  CAS  Google Scholar 

  28. H.-H. Huang, H.-H. Chiu, W. Nan-Chung, M.-C. Wang, Metall. Mater. Trans. A 39, 3276 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Defence Research and Development Organization, Ministry of Defence, for carrying out the present work. We thank Mr. Ajeet Kumar and Mr. Paul Praveen, research scholars for their help in some experiments. Also, the authors would like to thank the Director of Defence Metallurgical Research laboratory (DMRL) for permitting publication of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. V. Mahesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahesh, M.L.V., Bhanu Prasad, V.V. & James, A.R. Effect of sintering temperature on the microstructure and electrical properties of zirconium doped barium titanate ceramics. J Mater Sci: Mater Electron 24, 4684–4692 (2013). https://doi.org/10.1007/s10854-013-1460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1460-3

Keywords

Navigation