Skip to main content
Log in

Investigation of chalcopyrite film growth: an evolution of thin film morphology and structure during selenization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we report a study of the evolution of Cu–In–Ga–Se system during selenization. The metallic precursors were selenized in Se vapour atmosphere at temperature range from 210 to 380 °C. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra were used to investigate morphological and structural properties of the films. A great amount of thin platelets appeared in the film surfaces at temperature range from 210 to 270 °C. Most platelets had hexagon or polygon structures. The average sizes of these platelets increased with the temperatures. TEM analyses indicated that these platelets had γ-CuSe phases. Beyond 310 °C, most of CuSe platelets decomposed under release of selenium and formed Cu2−xSe. Cu2−xSe might react with InSe for the formation of tetragonal CuInSe2. The average grain sizes increased obviously with the increased temperatures. A possible reaction path to obtain a chalcopyrite structural film was discussed in the end. In addition, Ga was detected rich in the bottom of the film by energy dispersive spectroscopy and grazing incidence X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Nakada, Electron. Mater. Lett. 8, 179 (2012)

    Article  CAS  Google Scholar 

  2. J. Kaneshiro, N. Gaillard et al., Sol. Energy Mater. Sol. Cells 94, 12 (2010)

    Article  CAS  Google Scholar 

  3. S.Y. Kim, J.H. Kim, J. Korean Phys. Soc. 60, 2018 (2012)

    Article  CAS  Google Scholar 

  4. P. Jackson, D. Hariskos et al., Prog. Photovolt Res. Appl. 19, 894 (2011)

    Article  CAS  Google Scholar 

  5. T.J. Gillespie, C.H. Marshall, Sol. Energy Mater. Sol. Cells 59, 27 (1999)

    Article  CAS  Google Scholar 

  6. C.J. Hibberd, E. Chassaing et al., Prog. Photovolt Res. Appl. 18, 434 (2010)

    Article  CAS  Google Scholar 

  7. C.H. Shen, Y.C. Lin, J. Mater. Sci. Mater. Electron. 24, 2906 (2013)

    Article  CAS  Google Scholar 

  8. J.K. Sim, K. Ashok et al., Met. Mater. Int. 19, 303 (2013)

    Article  CAS  Google Scholar 

  9. F.B. Dejene, Curr. Appl. Phys. 10, 36 (2010)

    Article  Google Scholar 

  10. S. Niki, M. Contreras et al., Prog. Photovolt Res. Appl. 18, 453 (2010)

    Article  CAS  Google Scholar 

  11. D. Wolf, G. MuÈller, Thin Solid Films 361–362, 155 (2000)

    Article  Google Scholar 

  12. S. Ishizuka, H. Shibata et al., Appl. Phys. Lett. 91, 041902 (2007)

    Article  Google Scholar 

  13. R. Klenk, T. Walter et al., Adv. Mater. 5, 114 (1993)

    Article  CAS  Google Scholar 

  14. J. Liu, A.X. Wei et al., J. Mater. Sci. Mater. Electron. 24, 2553 (2013)

    Article  CAS  Google Scholar 

  15. N.H. Kim, S. Oh et al., J. Korean Phys. Soc. 61, 1177 (2012)

    Article  CAS  Google Scholar 

  16. F. Hergert, S. Jost et al., Part. Part. Syst. Charact. 22, 423 (2005)

    Article  Google Scholar 

  17. S. Han, F. Hasoon et al., J. Phys. Chem. Solids 66, 1895 (2005)

    Article  CAS  Google Scholar 

  18. T.P. Hsieh, C.C. Chuang et al., Solid-State Electron. 56, 175 (2011)

    Article  CAS  Google Scholar 

  19. C. Liao, J. Han, K. Zhao et al., Chin. J. Inorg. Chem. 27, 1 (2011)

    Article  CAS  Google Scholar 

  20. C. Liao, J. Han, K. Zhao et al., Acta Phys. Chim. Sin. 27, 432 (2011)

    CAS  Google Scholar 

  21. W. Witte, R. Kniese et al., Thin Solid Films 517, 867 (2008)

    Article  CAS  Google Scholar 

  22. K.H. Liao, C.Y. Sua et al., Appl. Surf. Sci. 263, 476 (2012)

    Article  CAS  Google Scholar 

  23. T. Mise, T. Nakada, Sol. Energy Mater. Sol. Cells 93, 1000 (2009)

    Article  CAS  Google Scholar 

  24. A. Gobeaut, L. Laffont, J.M. Tarascon et al., Thin Solid Films 517, 4436 (2009)

    Article  CAS  Google Scholar 

  25. S. Schleussner, U. Zimmermann et al., Sol. Energy Mater. Sol. Cells 95, 721 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Zhang Hui-zhen for sample preparation and analysis by FESEM. The presented results were supported by the Beijing Ministerium for the science project under contract no.H030630010120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-feng Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Jf., Liao, C., Jiang, T. et al. Investigation of chalcopyrite film growth: an evolution of thin film morphology and structure during selenization. J Mater Sci: Mater Electron 24, 4636–4642 (2013). https://doi.org/10.1007/s10854-013-1455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1455-0

Keywords

Navigation