Deposition of Cu–Mn alloy film from supercritical carbon dioxide for advanced interconnects

Article

Abstract

Cu–Mn alloy films for microelectronic interconnects were deposited by H2 reduction of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)-copper(II) [Cu(tmhd)2] and bis(penta-methylcyclopentadienyl)-manganese [Mn(pmcp)2] in supercritical carbon dioxide (scCO2). 20-nm thick and continuous Cu–Mn films with a smooth surface were deposited at the temperature of 210 °C. Manganese was found to be segregated to film surface and its content on the surface increased with increasing Mn precursor concentration in scCO2. Mn addition by supercritical fluid deposition could improve surface quality of the Cu film. And electrical resistivity of the Cu–Mn films increased with the Mn contents in the film.

References

  1. 1.
    S.P. Murarka, Multilevel interconnections for ULSI and GSI era. Mater. Sci. Eng. R 19, 87–151 (1997)CrossRefGoogle Scholar
  2. 2.
    M. Hansan, J.F. Rohan, Cu electrodeposition from methanesulfonate electrolytes for ULSI and MEMS applications. J. Electrochem. Soc. 157, D278–D282 (2010)CrossRefGoogle Scholar
  3. 3.
    K.N. Tu, Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94, 5451–5473 (2003)CrossRefGoogle Scholar
  4. 4.
    C.C. Yang, P. Flaitz, B. Li, F. Chen, C. Christiansen, S.Y. Lee, P. Ma, D. Edelstein, Co capping layers for Cu/low-k interconnects. Microelectron. Eng. 92, 79–82 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Kim, T. Koseki, T. Ohba, T. Ohta, Y. Kojima, H. Sato, Y. Shimogaki, Cu wettability and diffusion barrier property of Ru thin film for Cu metallization. J. Electrochem. Soc. 152, G594–G600 (2005)CrossRefGoogle Scholar
  6. 6.
    L. Zhang, M. Kraatz, O. Aubel, C. Hennesthal, J. Im, E. Zschech, P.S. Ho, in Proceedings of the IEEE 2010 International Interconnect Technology Conference (IITC 2010), 2010, p. 1Google Scholar
  7. 7.
    B. Zhao, T. Momose, Y. Shimogaki, Deposition of Cu–Ag alloy film by supercritical fluid deposition. Jpn. J. Appl. Phys. 45, L1296–L1299 (2006)CrossRefGoogle Scholar
  8. 8.
    S. Muranaka, M. Sueyoshi, K. Mori, K. Maekawa, M. Fujisawa, K. Asai, Effect of impurities and microstructure of Cu electroplated film on reliability of Cu interconnects using CuAl alloy seed. Microelectron. Eng. 105, 91–94 (2013)CrossRefGoogle Scholar
  9. 9.
    I. Volov, X. Sun, G. Gadikota, P. Shi, A.C. West, Electrodeposition of copper–tin film alloys for interconnect applications. Electrochim. Acta 89, 792–797 (2013)CrossRefGoogle Scholar
  10. 10.
    K. Barmak, A. Gungor, C. Cabral, J.M.E. Harper, Annealing behavior of Cu and dilute Cu-alloy films: precipitation, grain growth, and resistivity. J. Appl. Phys. 94, 1605–1616 (2003)CrossRefGoogle Scholar
  11. 11.
    J. Koike, M. Wada, Self-forming diffusion barrier layer in Cu–Mn alloy metallization. Appl. Phys. Lett. 87, 041911–041913 (2005)CrossRefGoogle Scholar
  12. 12.
    M.H. Lin, A.S. Oates, Electromigration in dual-damascene CuMn alloy IC interconnects. IEEE Trans. Device Mat. R. 13, 330–332 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Au, Q.M. Wang, H. Li, J.M. Lehn, D.V. Shenai, R.G. Gordon, Vapor deposition of highly conformal copper seed layers for plating through-silicon vias (TSVs). J. Electrochem. Soc. 159, D382–D385 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Armini, Z. El-Mekki, K. Vandersmissen, H. Philipsen, S. Rodet, M. Honore, A. Radisic, Y. Civale, E. Beyne, L. Leunissen, Void-free filling of HAR TSVs using a wet alkaline Cu seed on CVD Co as a replacement for PVD Cu seed. J. Electrochem. Soc. 158, H160–H165 (2011)CrossRefGoogle Scholar
  15. 15.
    J.M. Blackburn, D.P. Long, A. Cabanas, J.J. Watkins, Deposition of conformal copper and nickel films from supercritical carbon dioxide. Science 294, 141–145 (2001)CrossRefGoogle Scholar
  16. 16.
    C.F. Karanikas, J.J. Watkins, Kinetics of the ruthenium thin film deposition from supercritical carbon dioxide by the hydrogen reduction of Ru(tmhd)2cod. Microelectron. Eng. 87, 566–572 (2010)CrossRefGoogle Scholar
  17. 17.
    A. Cabanas, D.P. Long, J.J. Watkins, Deposition of gold films and nanostructures from supercritical carbon dioxide. Chem. Mater. 16, 2028–2033 (2004)CrossRefGoogle Scholar
  18. 18.
    B. Zhao, T. Momose, T. Ohkubo, Y. Shimogaki, Acetone-assisted deposition of silver films in supercritical carbon dioxide. Microelectron. Eng. 85, 675–681 (2008)CrossRefGoogle Scholar
  19. 19.
    H. Kim, T. Koseki, T. Ohba, T. Ohta, Y. Kojima, H. Sato, Y. Shimogaki, Cu wettability and diffusion barrier property of Ru thin film for Cu metallization. J. Electrochem. Soc. 152, G594–G600 (2005)CrossRefGoogle Scholar
  20. 20.
    T. Momose, T. Uejima, H. Yamada, Y. Shimogaki, M. Sugiyama, Ultra-conformal metal coating on high-aspect-ratio three-dimensional structures using supercritical fluid: controlled selectivity/non-selectivity. Jpn. J. Appl. Phys. 51, 056502–056505 (2012)CrossRefGoogle Scholar
  21. 21.
    Sigma-Aldrich, Bis(pentamethylcyclopentadienyl) manganese(II)-Material Safety Data Sheet (2012). [Online] Available at: http://www.sigmaaldrich.com/catalog/product/aldrich/415405
  22. 22.
    W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, M. Engelhardt, Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. J. Appl. Phys. 97, 023706–023707 (2005)CrossRefGoogle Scholar
  23. 23.
    T. Momose, M. Sugiyama, Y. Shimogaki, In situ observation of initial nucleation and growth processes in supercritical fluid deposition of copper. Jpn. J. Appl. Phys. 47, 885 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations