Skip to main content
Log in

Size-dependent magnetic and dielectric properties of Tb-doped BiFeO3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and Tb-doped BiFeO3 nanoparticles have been prepared by sol–gel method. The nanoparticles of different size have been obtained by the calcination of synthesized nanoparticles at different temperatures. The effects of Tb doping and size of nanoparticles on the crystal structure, magnetic and electrical properties have been studied. The partial substitution of Tb ions results in a change from rhombohedral (x = 0) to orthorhombic (x = 0.15) structure. The average crystallite size varies from 14 to 40 nm. The synthesized nanoparticles possess ferromagnetic behavior. The saturation magnetization is high for the Tb-doped BiFeO3 nanoparticles calcined at 450 °C, and it decrease with the increase of size. The dielectric constant and loss improve with Tb doping and size. The relaxation behavior of dielectric loss is of Debye type. The dielectric loss peaks shift to the lower frequencies with increase in the size of Tb-doped BiFeO3 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  CAS  Google Scholar 

  2. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  CAS  Google Scholar 

  3. H. Schmid, Ferroelectrics 162, 317 (1994)

    Article  Google Scholar 

  4. M. Fiebig, J. Phys. D 38, R123 (2005)

    Article  CAS  Google Scholar 

  5. C.W. Nan, Phys. Rev. B 50, 6082 (1994)

    Article  CAS  Google Scholar 

  6. S.K. Srivastav, N.S. Gajbhiye, J. Am. Ceram. Soc. 95, 3678 (2012)

    Article  CAS  Google Scholar 

  7. G.S. Lotey, N.K. Verma, J. Nanopart. Res. 14, 1 (2012)

    Article  Google Scholar 

  8. G.S. Lotey, N.K. Verma, Superlattice Microst. 53, 184 (2012)

    Article  Google Scholar 

  9. G.S. Lotey, N.K. Verma, J. Nanopart. Res. 15, 1 (2013)

    Article  Google Scholar 

  10. P. Uniyal, K.L. Yadav, Mater. Lett. 62, 2858 (2008)

    Article  CAS  Google Scholar 

  11. P. Uniyal, K.L. Yadav, J. Alloy. Compd. 511, 149 (2012)

    Article  CAS  Google Scholar 

  12. P. Uniyal, K.L. Yadav, J. Appl. Phys. 105, 07D914 (2009)

    Article  Google Scholar 

  13. F.Z. Qian, J.S. Jiang, D.M. Jiang, W.G. Zhang, J.H. Liu, J. Phys. D Appl. Phys. 43, 025403 (2010)

    Article  Google Scholar 

  14. J. Liu, L. Fang, F. Zheng, S. Ju, M. Shen, Appl. Phys. Lett. 95, 022511 (2009)

    Article  Google Scholar 

  15. Y. Wang, C.W. Nan, J. Appl. Phys. 103, 024103 (2012)

    Article  Google Scholar 

  16. D.P. Dutta, O.D. Jayakumar, A.K. Tyagi, K.G. Girija, C.G.S. Pillai, G. Sharm, Nanoscale 2, 1149 (2010)

    Article  CAS  Google Scholar 

  17. K. Chakrabarti, K. Das, B. Sarkar, S. Ghosh, S.K. De, G. Sinha, J. Lahtinen, Appl. Phys. Lett. 101, 042401 (2012)

    Article  Google Scholar 

  18. S.K. Mandal, T. Rakshit, S.K. Ray, S.K. Mishra, P.S.R. Krishna, A. Chandra, J. Phys.: Condens. Matter 25, 055303 (2013)

    Article  CAS  Google Scholar 

  19. Y.H. Tang, T.C. Han, H.L. Liu, J.G. Lin, J. Supercond. Nov. Magn. 25, 2753 (2012)

    Article  CAS  Google Scholar 

  20. T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Nano Lett. 7, 766 (2007)

    Article  CAS  Google Scholar 

  21. S.M. Selbach, T. Tybell, M.A. Einarsrud, T. Grande, Chem. Mater. 19, 6478 (2007)

    Article  CAS  Google Scholar 

  22. S. Goswami, D. Bhattacharya, P. Choudhury, J. Appl. Phys. 109, 07D737 (2011)

    Article  Google Scholar 

  23. R. Jaiswal, K. Das, P.M. Vivekanand, S. Abraham, P. Adyanthaya, J. Poddar, Phys. Chem. C 114, 2108 (2010)

    Article  CAS  Google Scholar 

  24. R. Mazumder, S. Ghosh, P. Mondal, D. Bhattacharya, S. Dasgupta, J. Appl. Phys. 100, 033908 (2006)

    Article  Google Scholar 

  25. J.W. Lin, T. Tite, H. Tang, C.S. Lue, Y.M. Chang, J.G. Lin, J. Appl. Phys. 111, 07D910 (2012)

    Article  Google Scholar 

  26. P. Debye, Ann. Phys. 351, 809 (1915)

    Article  Google Scholar 

  27. J.B. Macchesney, H.J. Williams, R.C. Sherwood, J.F. Potter, J. Chem. Phys. 44, 596 (1966)

    Article  CAS  Google Scholar 

  28. F.Z. Qian, J.S. Jiang, S.Z. Guo, D.M. Jiang, W.G. Zhang, J. Appl. Phys. 106, 084312 (2009)

    Article  Google Scholar 

  29. C. Yang, J. Jiang, C.M. Wang, W.G. Zhang, J. Phys. Chem. Solids 73, 115 (2012)

    Article  CAS  Google Scholar 

  30. K. Chakrabarti, K. Das, B. Sarkar, S.K. De, J. Appl. Phys. 110, 103905 (2011)

    Article  Google Scholar 

  31. H.Z. Ling, Z.H. Feng, Y. Jie, K.Y. Qing, Y.H. Jing, J.H. Bo, C.M. Sheng, Chin. Phys. Lett. 28, 037702 (2011)

    Article  Google Scholar 

  32. R. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, J. Phys. Chem. C 114, 21390 (2010)

    Article  CAS  Google Scholar 

  33. R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, Appl. Phys. Lett. 91, 062510 (2007)

    Article  Google Scholar 

  34. Y. Hu, L. Fei, Y. Zhang, J. Yuan, Y. Wang, H. Gu, J. Nanomater. 2011, 797639 (2011)

    Article  Google Scholar 

  35. B. Bhushan, Z. Wang, J. Tol, N.S. Dalal, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, J. Am. Cera. Soc. 95, 1985 (2012)

    Article  CAS  Google Scholar 

  36. R. Das, T. Sarkar, K. Mandal, J. Phys. D Appl. Phys. 45, 455002 (2012)

    Article  Google Scholar 

  37. S.K. Mukherjee, M. Hossain, M. Pal, S. Basu, Appl. Nanosci. 2, 305 (2012)

    Article  CAS  Google Scholar 

  38. W. Hu, L. Li, W. Tong, G. Li, T. Yan, J. Mater. Chem. 20, 8659 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work is supported by Government of India, Department of Atomic Energy (DAE), Board of Research in Nuclear Sciences (BRNS) vide sanction No. 2012/37P/48/BRNS.

Conflict of interest

We hereby declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gitanjali Dhir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhir, G., Lotey, G.S., Uniyal, P. et al. Size-dependent magnetic and dielectric properties of Tb-doped BiFeO3 nanoparticles. J Mater Sci: Mater Electron 24, 4386–4392 (2013). https://doi.org/10.1007/s10854-013-1414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1414-9

Keywords

Navigation