Skip to main content
Log in

Band gap tailoring, structural and morphological properties of Zn0.98−xMn0.02CuxO (0 ≤ x ≤ 0.05) nanopowders by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn0.98−xMn0.02CuxO (0 ≤ x ≤ 0.05) nanopowders have been synthesized by sol–gel method. The synthesized nanopowders were characterized by powder X-ray diffraction, energy dispersive X-ray spectra, UV–visible spectrophotometer and Fourier transform infrared spectroscopy. The XRD measurement revealed that the prepared nanopowders have different microstructure without changing a hexagonal wurtzite structure. The calculated average crystallite size was decreased from 22.4 to 16.7 nm for Cu = 0–0.02 then gradually increased to 21.5 nm for Cu = 0.05 which were confirmed by SEM. The change in lattice parameters, shift in X-ray diffraction peaks and the change in energy gap revealed the substitution of Cu2+ ions into Zn–Mn–O lattice. The observed red shift of optical energy gap (Eg ≈ 0.27 eV) at lower concentrations (Cu ≤ 2 %) is explained by increasing charge carriers and Moss–Burstein effect meanwhile blue shift (Eg ≈ 0.56 eV) at higher Cu concentrations (Cu > 2 %) is explained in terms of the distortion of host lattice and generation of defects. The variation of crystallite size was discussed in terms of micro-strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V.V. Malyshev, A.V. Pislyakov, Sens. Actuators B Chem. 123, 71 (2007)

    Article  CAS  Google Scholar 

  2. A. Dodd, A. McKinley, M. Saunders, T. Tsuzuki, Nanotechnology 17, 692 (2006)

    Article  CAS  Google Scholar 

  3. C. Jagadish, S. Pearton (eds.), Zink oxide bulk, thin films and nanostructures, in Processing, Properties, and Applications, 1st edn. (Elsevier, Oxford, 2006)

  4. H. Ohno, Science 281, 951 (1998)

    Article  CAS  Google Scholar 

  5. J. Goldberger, R.R. He, Y.F. Zhang, S.W. Lee, H.Q. Yan, H.J. Choi, P. Yang, Nature 422, 599 (2003)

    Article  CAS  Google Scholar 

  6. O.D. Jayakumar, I.K. Gopalakrishnan, Appl. Phys. Lett. 89, 202507 (2006)

    Article  Google Scholar 

  7. I. Malajovich, J.J. Berry, N. Samarth, D.D. Awshalom, Nature 411, 770 (2001)

    Article  CAS  Google Scholar 

  8. Q. Yan, R. He, J. Pham, P.D. Yang, Adv. Mater. 15, 402 (2003)

    Article  CAS  Google Scholar 

  9. S. Deka, P.A. Joy, Appl. Phys. Lett. 89, 032508 (2006)

    Article  Google Scholar 

  10. R. Konenkamp, R.C. Word, C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004)

    Article  CAS  Google Scholar 

  11. J.J. Chen, F. Zeng, D.M. Li, J.B. Niu, F. Pan, Thin Solid Films 484, 257 (2005)

    Article  Google Scholar 

  12. A. Fert, Thin Solid Films 517, 2 (2008)

    Article  CAS  Google Scholar 

  13. Y.M. Tao, S.Y. Ma, H.X. Chen, J.X. Meng, L.L. Hou, Y.F. Jia, X.R. Shang, Vacuum 85, 744 (2011)

    Article  CAS  Google Scholar 

  14. Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, C.H.A. Huan, T. Wu, J. Phys. Chem. C112, 9579 (2008)

    Google Scholar 

  15. C.F. Jin, X. Yuan, W.W. Ge, J.M. Hong, X.Q. Xin, Nanotechnology 14, 667 (2003)

    Article  CAS  Google Scholar 

  16. H. Udono, Y. Sumi, S. Yamada, I. Kikuma, J. Cryst. Growth 310, 1827 (2008)

    Article  CAS  Google Scholar 

  17. T. Tsuzuki, P.G. McCormick, Scr. Mater. 44, 1731 (2001)

    Article  CAS  Google Scholar 

  18. Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan, Chem. Phys. Lett. 358, 83 (2002)

    Article  CAS  Google Scholar 

  19. C.L. Zhang, W.N. Zhou, Y. Hang, Z. Lu, H.D. Hou, Y.B. Zuo, S.J. Qin, F.H. Lu, S.L. Gu, J. Cryst. Growth 310, 1819 (2008)

    Article  CAS  Google Scholar 

  20. S.E. Ahn, J.S. Lee, H. Kim, S. Kim, B.H. Kang, K.H. Kim, G.T. Kim, Appl. Phys. Lett. 84, 5022 (2004)

    Article  CAS  Google Scholar 

  21. I.R. Collins, S.E. Taylor, J. Mater. Chem. 2, 1277 (1992)

    Article  CAS  Google Scholar 

  22. D. Jezequel, J. Guenot, N. Jouini, F. Fievet, J. Mater. Res. 10, 77 (1995)

    Article  CAS  Google Scholar 

  23. L. Poul, S. Ammar, N. Jouini, F. Fievet, F. Villain, Solid State Sci. 3, 31 (2001)

    Article  CAS  Google Scholar 

  24. L. Poul, S. Ammar, N. Jouini, F. Fievet, F. Villain, J. Sol–Gel Sci. Technol. 26, 261 (2003)

    Article  CAS  Google Scholar 

  25. S. Lee, S. Jeong, D. Kim, S. Hwang, M. Jeon, J. Moon, Super Lattices Microstruct. 43, 330 (2008)

    Article  CAS  Google Scholar 

  26. M. Arshad, A. Azam, A.S. Ahmed, S. Mollah, A.H. Naqvi, J. Alloys Compd. 509, 8378 (2011)

    Article  CAS  Google Scholar 

  27. S. Muthukumaran, R. Gopalakrishnan, J. Mater. Sci.: Mater. Electron. 23, 1393 (2012)

    Article  CAS  Google Scholar 

  28. X.M. Teng, H.T. Fan, S.S. Pan, C. Ye, G.H. Lia, J. Appl. Phys. 100, 053507 (2006)

    Article  Google Scholar 

  29. B.N. Dole, V.D. Mote, V.R. Huse, Y. Purushotham, M.K. Lande, K.M. Jadhav, S.S. Shah, Curr. Appl. Phys. 11, 762 (2011)

    Article  Google Scholar 

  30. J. Yang, L. Fei, H. Liu, Y. Liu, M. Gao, Y. Zhang, L. Yang, J. Alloys Compd. 509, 3672 (2010)

    Article  Google Scholar 

  31. H. Liu, J. Yang, Z. Hua, Y. Zhang, L. Yang, L. Xiao, Z. Xie, Appl. Surf. Sci. 256, 4162 (2010)

    Article  CAS  Google Scholar 

  32. H. Xu, Q. Zhao, H. Yang, Y. Chen, J. Nanopart. Res. 11, 615 (2009)

    Article  CAS  Google Scholar 

  33. S.J. Han, J.W. Song, C.H. Yang, S.H. Park, J.H. Parket, J.H. Jeong, Appl. Phys. Lett. 81, 4212 (2002)

    Article  CAS  Google Scholar 

  34. J. Shim, T. Hwang, J. Park, S.J. Han, Y. Jeong, Appl. Phys. Lett. 86, 082503 (2005)

    Article  Google Scholar 

  35. H. Liu, J. Yang, Z. Hua, Y. Liu, L. Yang, Y. Zhang, J. Cao, Mater. Chem. Phys. 125, 656 (2011)

    Article  CAS  Google Scholar 

  36. A. Askarinejad, A. Morsali, Ultrason. Sonochem. 16, 124 (2009)

    Article  CAS  Google Scholar 

  37. Y. Wei, D. Hou, S. Qiao, C. Zhen, G. Tang, Physica B 404, 2486 (2009)

    Article  CAS  Google Scholar 

  38. J.H. Zheng, J.L. Song, Q. Jiang, J.S. Lian, Appl. Surf. Sci. 258, 6735 (2012)

    Article  CAS  Google Scholar 

  39. A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, J. Alloys Compd. 509, 5349 (2011)

    Article  Google Scholar 

  40. S. Muthukumaran, R. Gopalakrishnan, Physica B 407, 3448 (2012)

    Article  CAS  Google Scholar 

  41. P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Magn. Magn. Mater. 321, 4001 (2009)

    Article  CAS  Google Scholar 

  42. S. Muthukumaran, R. Gopalakrishnan, Optical Mater. 34, 1946 (2012)

    Article  CAS  Google Scholar 

  43. P.P. Hankare, P.A. Chate, D.J. Sathe, P.A. Chavan, V.M. Bhuse, J. Mater. Sci.: Mater. Electron. 20, 374 (2009)

    Article  CAS  Google Scholar 

  44. B.D. Cullity, Elements of X-ray Diffractions (Addison-Wesley, Reading, 1978)

    Google Scholar 

  45. G. Srinivasan, R.T.R. Kumar, J. Kumar, J. Sol–Gel Sci. Technol. 43, 171 (2007)

    Article  CAS  Google Scholar 

  46. B. Kulyk, B. Sahraoui, V. Figà, B. Turko, V. Rudyk, V. Kapustianyk, J. Alloys Compd. 481, 819 (2009)

    Article  CAS  Google Scholar 

  47. Y. Liu, J.H. Yang, Q.F. Guan, L.L. Yang, Y.J. Zhang, Y.X.W. Feng, J. Cao, X.Y. Liu, Y.T. Yang, M.B. Wei, J. Alloys Compd. 486, 835 (2008)

    Article  Google Scholar 

  48. R. Gopalakrishnan, S. Muthukumaran, J. Mater. Sci.: Mater. Electron. 24, 1069 (2013)

    Article  CAS  Google Scholar 

  49. S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J.C. Tedenac, J. Alloys Compd. 462, 335 (2008)

    Article  CAS  Google Scholar 

  50. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, D. Yoder-Short, Phys. Rev. B 33, 8207 (1986)

    Article  CAS  Google Scholar 

  51. B. Joseph, P.K. Manoj, V.K. Vaidyah, Ceramics Int. 32, 487 (2006)

    Article  CAS  Google Scholar 

  52. J. Diouri, J.P. Lascaray, M.E. Amrani, Phys. Rev. B 31, 7995 (1985)

    Article  CAS  Google Scholar 

  53. A.P. Palomino, O.P. Perez, R. Singhal, M. Tomar, J. Hwang, P.M. Voyles, J. Appl. Phys. 103, 07D121 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University Grant Commission, Hyderabad, for financial support under the project (File No.: MRP- 3610/11(MRP/UGC-SERO)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anbuselvan, D., Muthukumaran, S. Band gap tailoring, structural and morphological properties of Zn0.98−xMn0.02CuxO (0 ≤ x ≤ 0.05) nanopowders by sol–gel method. J Mater Sci: Mater Electron 24, 4113–4121 (2013). https://doi.org/10.1007/s10854-013-1369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1369-x

Keywords

Navigation