Skip to main content
Log in

ZnO@CdS core–shell thin film: fabrication and enhancement of exciton life time by CdS nanoparticle

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study photoluminescence behavior of ZnO and ZnO@CdS core–shell nanorods film has been reported. ZnO nanorods were grown on the glass coated indium tin oxide (ITO) surface by seeding ZnO particle followed with nanorods growth. These nanorods were coated with CdS by chemical bath deposition techniques to have ZnO@CdS thin film and further annealed at 200 °C for their adherence to the ITO surface. The coating was characterized for surface morphology using SEM and optical behavior using UV–visible spectrophotometer. Energy dispersive X-ray (EDX) was used for compositional analysis and time resolve photoluminescence decay for excitons life time measurement. The absorption spectrum reveals that the absorption edge of ZnO@CdS core–shell heterostructure shifted to 480 nm in the visible region whereas ZnO nanorods have absorption maxima at 360 nm. The excitons lifetime of ZnO@CdS was found to be increased with the thickness of the CdS layer on ZnO nanorod. These ZnO@CdS core–shell nanostructures will be of great use in the field of photovoltaic cell and photocatalysis in a UV–visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Klingshirn, R. Hauschild, H. Priller, M. Decker, J. Zeller, H. Kalt, Superlattices Microstruct. 38, 209 (2005)

    Article  CAS  Google Scholar 

  2. J.B. Baxter, E.S. Aydil, Sol. Energy Mater. Sol. Cells 90, 607 (2006)

    Article  CAS  Google Scholar 

  3. L. Liao, H.B. Lu, J.C. Li, H. He, D.F. Wang, D.J. Fu, C. Liu, W.F. Zhang, J. Phys. Chem. C. 111, 1900 (2007)

    Article  CAS  Google Scholar 

  4. S. Cho, K.-H. Lee, Cryst. Growth Des. 10, 1289 (2009)

    Article  Google Scholar 

  5. R.Q. Guo, J. Nishimura, M. Ueda, M. Higashihata, D. Nakamura, T. Okada, Appl. Phys. A 89, 141 (2007)

    Article  CAS  Google Scholar 

  6. K. Wang, J.J. Chen, Z.M. Zeng, J. Tarr, W.L. Zhou, Y. Zhang, Y.F. Yan, C.S. Jiang, J. Pern, A. Mascarenhas, Appl. Phys. Lett. 96, 123105 (2010)

    Article  Google Scholar 

  7. Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, J. Kang, J. Mater. Chem. 21, 6020 (2011)

    Article  CAS  Google Scholar 

  8. F. Xu, V. Volkov, Y. Zhu, H. Bai, A. Rea, N.V. Valappil, W. Su, X. Gao, I.L. Kuskovsky, H. Matsui, J. Phys. Chem. C 113, 19419 (2009)

    Article  CAS  Google Scholar 

  9. R. Tena-Zaera, A. Katty, S. Bastide, C. Lévy-Clément, Chem. Mater. 19, 1626 (2007)

    Article  CAS  Google Scholar 

  10. Y.F. Zhu, G.H. Zhou, H.Y. Ding, A.H. Liu, Y.B. Lin, Y.W. Dong, Superlattices Microstruct. 50, 549 (2011)

    Article  CAS  Google Scholar 

  11. B.H. Kong, H.K. Cho, J. Cryst. Growth 289, 370 (2006)

    Article  CAS  Google Scholar 

  12. L.C. Tien, D.P. Norton, S.J. Pearton, H.-T. Wang, F. Ren, Appl. Surf. Sci. 253, 4620 (2007)

    Article  CAS  Google Scholar 

  13. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B 110, 16159 (2006)

    Article  CAS  Google Scholar 

  14. Z.W. Liu, C.K. Ong, T. Yu, Z.X. Shen, Appl. Phys. Lett. 88, 053110 (2006)

    Article  Google Scholar 

  15. Y.Y. Xi, Y.F. Hsu, A.B. Djurisic, A.M.C. Ng, W.K. Chan, H.L. Tam, K.W. Cheah, Appl. Phys. Lett. 92, 113505 (2008)

    Article  Google Scholar 

  16. D. Wang, C. Song, J. Phys. Chem. B 109, 12697 (2005)

    Article  CAS  Google Scholar 

  17. Z. Chen, L. Gao, Cryst. Growth Des. 293, 522 (2006)

    Article  CAS  Google Scholar 

  18. R. Demir, S. Okur, M.e. Seker, M. Zor. Ind. Eng. Chem. Res. 50, 5606 (2011)

    Article  CAS  Google Scholar 

  19. W. Jung, K. Byun, Biomed. Eng. Lett. 1, 153 (2011)

    Article  Google Scholar 

  20. H. He, Z. Ye, S. Lin, B. Zhao, J. Huang, H. Tang, J. Phys. Chem. C 112, 14262 (2008)

    Article  CAS  Google Scholar 

  21. P. Rodríguez-Fragoso, G.G. de la Cruz, S.A. Tomas, O. Zelaya-Angel, Appl. Surf. Sci. 257, 581 (2010)

    Article  Google Scholar 

  22. A.N. Banerjee, C.K. Ghosh, K.K. Chattopadhyay, H. Minoura, A.K. Sarkar, A. Akiba, A. Kamiya, T. Endo, Thin Solid Films 496, 112 (2006)

    Article  CAS  Google Scholar 

  23. D.P. Dubal, D.S. Dhawale, A.M. More, C.D. Lokhande, J. Mater. Sci. 46, 2288 (2011)

    Article  CAS  Google Scholar 

  24. O. Lupan, L. Chow, G. Chai, A. Schulte, S. Park, O. Lopatiuk-Tirpak, L. Chernyak, H. Heinrich, Superlattices Microstruct. 43, 292 (2008)

    Article  CAS  Google Scholar 

  25. H. Zeng, W. Cai, J. Hu, G. Duan, P. Liu, Y. Li, Appl. Phys. Lett. 88, 171910 (2006)

    Article  Google Scholar 

  26. F. Xu, Z.Y. Yuan, G.H. Du, M. Halasa, B.L. Su, Appl. Phys. A 86, 181 (2007)

    Article  CAS  Google Scholar 

  27. Y.L. Wu, A.I.Y. Tok, F.Y.C. Boey, X.T. Zeng, X.H. Zhang, Appl. Surf. Sci. 253, 5473 (2007)

    Article  CAS  Google Scholar 

  28. H.-J. Zhang, H.-M. Xiong, Q.-G. Ren, Y.-Y. Xia, J.-L. Kong, J. Mater. Chem. 22, 13159 (2012)

    Article  CAS  Google Scholar 

  29. R. Yousefi, B. Kamaluddin, Appl. Surf. Sci. 255, 9376 (2009)

    Article  CAS  Google Scholar 

  30. D. Ding, S.R. Johnson, S.Q. Yu, S.N. Wu, Y.H. Zhang, J. Appl. Phys. 110, 123104 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CSIR for research fellowships and supports extended for this work. The authors also acknowledge Mr. Pratik Chakraborty and Dr. Manoj Kumar Nayak for correcting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinmoy Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, M., Kapur, P., Ghanshyam, C. et al. ZnO@CdS core–shell thin film: fabrication and enhancement of exciton life time by CdS nanoparticle. J Mater Sci: Mater Electron 24, 3800–3804 (2013). https://doi.org/10.1007/s10854-013-1321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1321-0

Keywords

Navigation