Skip to main content
Log in

Development of a lead-free composite solder from Sn–Ag–Cu and Ag-coated carbon nanotubes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The microelectronic applications of lead-free solders pose ever-increasing demands. We seek to improve the solder by forming composites with Ag-coated single-walled carbon nanotubes (Ag-coated SWCNTs). These were incorporated into 96.5Sn–3.0Ag–0.5Cu solder alloy with an ultrasonic mixing technique. Composite solder pastes with 0.01–0.10 wt% nanotube reinforcement were prepared. The wettability, melting temperature, microstructure and mechanical properties of the composite solders were determined, and their dependency on nanotube loading assessed. Loading with 0.01 wt% Ag-coated SWCNTs improved the composite solder’s wetting properties, and the contact angle was reduced by 45.5 %, while over loading of the coated nanotubes up to 0.10 wt% degraded the wettability. DSC results showed only slight effects on the melting behavior of the composite solders. Cross-section microstructure analysis of the spreading specimens revealed uniform distribution of the intermetallic compounds throughout the solder matrix, and EDS analysis identified the phases as β-Sn, Ag3Sn and Cu6Sn5. The mechanical properties of composite specimens, compared with those of unloaded 96.5Sn–3.0Ag–0.5Cu solder, had a maximal improvement in the shear strength of 11 % when the nanotube loading was 0.01 wt% of Ag-coated SWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)

    Article  Google Scholar 

  2. J.H.L. Pang, B.S. Xiong, IEEE transactions on components and packing technologies. 28, 830 (2005)

  3. P.K. Muthur Srinath, P.B. Aswath, J. Mater. Sci. 42, 7592 (2007)

    Article  Google Scholar 

  4. A. Lee, K.N. Subramanian, J. Electron. Mater. 34, 1399 (2005)

    Article  CAS  Google Scholar 

  5. F. Guo, J. Mater. Sci. Mater. Electron. 18, 129 (2007)

    Article  CAS  Google Scholar 

  6. J. Shen, Y.C. Chan, Microelectron. Reliab. 49, 223 (2009)

    Article  CAS  Google Scholar 

  7. S. Iijima, Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  8. S.M.L. Nai, M. Gupta, J. Wei, Int. J. Nanosci. 4, 423 (2005)

    Article  CAS  Google Scholar 

  9. S.M.L. Nai, J. Wei, M. Gupta, Thin Solid Films 504, 401 (2006)

    Article  CAS  Google Scholar 

  10. S.M.L. Nai, J. Wei, M. Gupta, Mater. Sci. Eng. A 423, 166 (2006)

    Article  Google Scholar 

  11. S.M.L. Nai, J. Wei, M. Gupta, J. Electron. Mater. 35, 1518 (2006)

    Article  CAS  Google Scholar 

  12. S.M.L. Nai, J. Wei, M. Gupta, J. Electron. Mater. 37, 515 (2008)

    Article  CAS  Google Scholar 

  13. S.M.L. Nai, J. Wei, M. Gupta, J. Alloys. Compd. 473, 100 (2009)

    Article  CAS  Google Scholar 

  14. Z.Q. Xue, W.M. Liu, S.M. Hou, J.P. Sun, Z.J. Shi, Z.N. Gu, X.Y. Zhao, Z.X. Zhang, J.L. Wua, L.M. Peng, Q.D. Wu, Mater. Sci. Eng. C 16, 17 (2001)

    Article  Google Scholar 

  15. K.M. Kumar, A.O. Andrew, V. Kripesh, J. Alloys Compd. 450, 229 (2008)

    Article  CAS  Google Scholar 

  16. K.M. Kumar, V. Kripesh, A.O. Andrew, J. Alloys Compd. 455, 148 (2008)

    Article  CAS  Google Scholar 

  17. K.M. Kumar, V. Kripesh, L. Shen, A.O. Andrew, Thin Solid Films 504, 371 (2006)

    Article  CAS  Google Scholar 

  18. Y. Feng, H. Yuan, J. Mater. Sci. 39, 3241 (2004)

    Article  CAS  Google Scholar 

  19. H.Y. Song, X.W. Zha, Phys. Lett. A 374, 1068 (2010)

    Article  CAS  Google Scholar 

  20. H. Liu, G. Cheng, R. Zheng, Y. Zhao, C. Liang, Diam. Relat. Mater. 15, 15 (2006)

    Article  Google Scholar 

  21. F.Z. Kong, X.B. Zhang, W.Q. Xiong, F. Liu, W.Z. Huang, Y.L. Sun, J.P. Tu, X.W. Chen, Sure. Coat. Technol. 155, 33 (2002)

    Article  CAS  Google Scholar 

  22. W.M. Daoush, B.K. Lim, C.B. Mo, D.H. Nam, S.H. Hong, Mater. Sci. Eng. A 513, 247 (2009)

    Google Scholar 

  23. C. Xu, G. Wu, Z. Liu, D. Wu, T.T. Meek, Q. Han, Mater. Res. Bull. 39, 1499 (2004)

    Article  CAS  Google Scholar 

  24. W.L. Liu, S.H. Hsieh, W.J. Chen, Appl. Surf. Sci. 253, 8356 (2007)

    Article  CAS  Google Scholar 

  25. D.L. Zhao, X. Li, Z.M. Shen, Comps. Sci. Technol. 68, 2902 (2008)

    Article  CAS  Google Scholar 

  26. X. Ma, X. Li, N. Lun, S. Wen, Mater. Chem. Phys. 97, 351 (2006)

    Article  CAS  Google Scholar 

  27. F. Wang, S. Arai, M. Endo, Carbon 43, 1716 (2005)

    Article  CAS  Google Scholar 

  28. X. Chen, J. Xia, J. Peng, W. Li, S. Xie, Compos. Sci. Technol. 60, 301 (2000)

    Article  CAS  Google Scholar 

  29. Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, Int. J. Nanosci. 9, 283 (2010)

    Article  CAS  Google Scholar 

  30. Y.D. Han, S.M.L. Nai, H.Y. Jing, L.Y. Xu, C.M. Tan, J. Wei, J. Mater. Sci. Mater. Electron. 22, 315 (2011)

    Article  CAS  Google Scholar 

  31. Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, Intermetallics 31, 72 (2012)

    Article  Google Scholar 

  32. B. Zhao, B.L. Yadian, Z.J. Li, P. Liu, Y.F. Zhang, Surf. Eng. 25, 31 (2009)

    Article  CAS  Google Scholar 

  33. H.Y. Lu, H. Balkan, K.Y. Simon Ng, J. Mater. Sci. Mater. Electron. 17, 171 (2006)

    Article  CAS  Google Scholar 

  34. D.Q. Yu, J. Zhao, L. Wang, J. Alloys. Compd. 376, 170 (2004)

    Article  CAS  Google Scholar 

  35. L. Wang, D.Q. Yu, J. Zhao, M.L. Huang, Mater. Lett. 56, 1039 (2002)

    Article  CAS  Google Scholar 

  36. S. Kang, D.Y. Shih, N.Y. Donald, W. Henderson, T. Gosselin, A. Sarkhel, N.Y. Charles Goldsmith, K. Puttlitz, W. Choi, JOM 55, 61 (2003)

    Article  CAS  Google Scholar 

  37. J.H.L. Pang, L. Xu, X.Q. Shi, W. Zhou, S.L. Ngoh, J. Electron. Mater. 33, 1219 (2004)

    Article  CAS  Google Scholar 

  38. V.L. Niranjani, B.S.S. Chandra Rao, V. Singh, S.V. Kamat, Mater. Sci. Eng. A 529, 257 (2011)

    Article  CAS  Google Scholar 

  39. J. Zhou, Y. Sun, F. Xue, J. Alloys. Compd. 397, 260 (2005)

    Article  CAS  Google Scholar 

  40. A.M.K. Esawi, M.A. El Borady, Compos. Sci. Technol. 68, 486 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Mining and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai for the laboratory facilities and the Center of Excellence in Nanotechnology at Prince of Songkla University, Hat Yai for the financial support. In addition, we would like to thank the Research and Development Office (RDO), Prince of Songkla University and Associate Professor Seppo Karrila, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus for commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Plookphol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chantaramanee, S., Wisutmethangoon, S., Sikong, L. et al. Development of a lead-free composite solder from Sn–Ag–Cu and Ag-coated carbon nanotubes. J Mater Sci: Mater Electron 24, 3707–3715 (2013). https://doi.org/10.1007/s10854-013-1307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1307-y

Keywords

Navigation