Skip to main content
Log in

High density Si/ZnO core/shell nanowire arrays for photoelectrochemical water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Si/ZnO core/shell nanowire (NW) arrays were fabricated using atomic layer deposition of ZnO shell on n-Si NW arrays prepared by metal assisted electroless etching method. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction were utilized to characterize the core/shell structures. Water splitting performance of the core/shell structures was preliminarily studied. The Si/ZnO core/shell NW arrays yielded significantly higher photocurrent density than the planar Si/ZnO structure due to their low reflectance and high surface area. The photoelectrochemical efficiency was found to be 0.035 and 0.002 % for 10 μm-long Si/ZnO NW array and planar Si/ZnO sample, respectively. These results suggested that core/shell structure is superior to planar heterojunction for PEC electrode design. We demonstrated the dependence of photocurrent density on the length of the core/shell array, and analyzed the reasons why longer NW arrays could produce higher photocurrent density. The relationship between the thickness of ZnO shell and the photoconversion efficiency of Si/ZnO NW arrays was also discussed. By applying the core/shell structure in electrode design, one may be able to improve the photoelectrochemical efficiency and photovoltaic device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Yu, J. Zhang, X. Wu, W. Zhao, Angew. Chem. Int. Ed. 51, 897 (2012)

    Article  CAS  Google Scholar 

  2. Y.J. Lin, G.B. Yuan, D.W. Wang, Chem. Phys. Lett. 507, 209 (2011)

    Article  CAS  Google Scholar 

  3. G. Ma, T. Minegishi, D. Yokoyama, J. Kubota, Chem. Phys. Lett. 501, 619 (2011)

    Article  CAS  Google Scholar 

  4. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  5. R.V.D. Krol, Y.Q. Liang, J. Schoonman, J. Mater. Chem. 18, 2311 (2008)

    Article  Google Scholar 

  6. K. Sivula, F.L. Formal, M. Gratzel, Chem. Mater. 21, 2862 (2009)

    Article  CAS  Google Scholar 

  7. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, Nat. Mater. 8, 76 (2009)

    Article  CAS  Google Scholar 

  8. X.B. Chen, L. Liu, P.Y. Yu, Science 331, 746 (2011)

    Article  CAS  Google Scholar 

  9. H. Yu, H. Irie, K. Hashimoto, J. Am. Chem. Soc. 132, 6898 (2010)

    Article  CAS  Google Scholar 

  10. S. Takabayashi, R. Nakamura, Y. Nakato, J. Photochem. Photobiol. A 166, 107 (2004)

    Article  CAS  Google Scholar 

  11. H. Morisaki, T. Watanabe, M. Iwase, Appl. Phys. Lett. 29, 338 (1976)

    Article  CAS  Google Scholar 

  12. C.Y. Lin, Y.K. Fang, C.H. Kuo, S.F. Chen, Appl. Surf. Sci. 253, 898 (2006)

    Article  CAS  Google Scholar 

  13. S.Y. Reece, J.A. Hamel, K. Sung, Science 334, 645 (2011)

    Article  CAS  Google Scholar 

  14. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, Nat. Mater. 10, 456 (2011)

    Article  CAS  Google Scholar 

  15. Y. Yin, Z. Jin, F. Hou, Nanotechnology 18, 495608 (2007)

    Article  Google Scholar 

  16. G.K. Mor, O.K. Vargnese, R.H. Wilke, Nano Lett. 8, 3555 (2008)

    Article  CAS  Google Scholar 

  17. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, Nat. Mater. 9, 239 (2010)

    Article  CAS  Google Scholar 

  18. H. Chen, H. Wang, X.H. Zhang, C.S. Lee, Nano Lett. 10, 864 (2010)

    Article  CAS  Google Scholar 

  19. J. Jiang, S. Li, Y. Jiang, Z. Wu, Z. Xiao, Y. Su, J. Mater. Sci.: Mater. Electron. 24, 463 (2013)

    Article  CAS  Google Scholar 

  20. K.Q. Peng, Y. Xu, Y. Wu, Y.J. Yan, S.T. Lee, J. Zhu, Small 1, 1062 (2005)

    Article  CAS  Google Scholar 

  21. H.T. Yu, S. Chen, X. Quan, H.M. Zhao, Appl. Catal. B 90, 242 (2009)

    Article  CAS  Google Scholar 

  22. Y.J. Hwang, A. Boukai, P.D. Yang, Nano Lett. 9, 410 (2009)

    Article  CAS  Google Scholar 

  23. M.T. Mayer, C. Du, D.W. Wang, J. Am. Chem. Soc. 134, 12406 (2012)

    Article  CAS  Google Scholar 

  24. K. Jun, Y.S. Lee, T. Buonassisi, J.M. Jacobson, Angew. Chem. Int. Ed. 50, 1 (2011)

    Article  Google Scholar 

  25. K.Q. Peng, X. Wang, S.T. Lee, Appl. Phys. Lett. 92, 163103 (2008)

    Article  Google Scholar 

  26. K.Q. Peng, J.J. Hu, Y.J. Yan, Y. Wu, Adv. Funct. Mater. 16, 387 (2006)

    Article  CAS  Google Scholar 

  27. L. Armelao, G. Bottaro, M. Pascolini, M. Sessolo, J. Phys. Chem. C 112, 4049 (2008)

    Article  CAS  Google Scholar 

  28. S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B. 63, 075205 (2001)

    Article  Google Scholar 

  29. Y.W. Heo, S.J. Park, Appl. Phys. Lett. 83, 1128 (2003)

    Article  CAS  Google Scholar 

  30. S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science 297, 2243 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (Project No. 60777009), the Key Laboratory Projects of The Education Department of Liaoning Province (Project No. 20060131), the Fundamental Research Funds for the Central Universities (Project No. DUT11LK46), the Doctoral Project by the China Ministry of Education (Project No. 20070141038), and Open Fund by Laboratory for MEMS, Liaoning Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heqiu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, J., Zhang, W., Zhang, H. et al. High density Si/ZnO core/shell nanowire arrays for photoelectrochemical water splitting. J Mater Sci: Mater Electron 24, 3474–3480 (2013). https://doi.org/10.1007/s10854-013-1272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1272-5

Keywords

Navigation