Skip to main content
Log in

Optical properties of Ag doped ZnO nanocrystals prepared by hydrothermal and photodeposition method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ag/ZnO nanocomposites have been synthesized by facile hydrothermal and photodeposition method. The effect of different concentration of Ag on the luminous intensity of ZnO was studied. The morphology, structure and optical properties of Ag/ZnO were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL), respectively. The XRD patterns show that intensities of diffraction peaks of Ag/ZnO were enhanced. The weak diffraction peak at 38.28° can be assigned to Ag2O when the concentration of Ag increased to 0.09 M. PL results demonstrate that the UV luminous intensity of ZnO was significantly influenced by the concentration of Ag. The UV luminous intensity of Ag/ZnO nanocomposites increased by 11 times as compared with undoped ZnO when the concentration of Ag was 0.03 M due to the local surface plasma resonance effect of Ag nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme.1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.D. Lee, Y.S. Kim, M.S. Yi, J.Y. Choi, S.W. Kim, J. Phys. Chem. C. 113(20), 8954 (2009)

    Article  CAS  Google Scholar 

  2. O. Lupan, L. Chow, G. Chai, L. Chernyak, O. Lopatiuk-Tirpak, H. Heinrich, Phys. Status Solidi. 205, 2673 (2008)

    Article  CAS  Google Scholar 

  3. C.L. Ren, B.F. Yang, M. Wu, J. Xu, Z.P. Fu, Y. lv, T. Guo, Y.X. Zhao, C.Q. Zhu, J. Hazard. Mater. 182, 123 (2010)

    Article  CAS  Google Scholar 

  4. P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, N. Muensit, J. Baltrusaitis, Powder Technol. 219, 158 (2012)

    Article  CAS  Google Scholar 

  5. O. Lupan, G. Chai, L. Chow, Microelectron. J. 38, 1211 (2007)

    Article  CAS  Google Scholar 

  6. O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, I.M. Tiginyanu, A.N. Gruzintsev, A.N. Redkin, Sens. Actuators. B 144, 56 (2010)

    Article  CAS  Google Scholar 

  7. R. Brayner, I.R. Ferrari, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet, Nano Lett. 6, 866 (2006)

    Article  CAS  Google Scholar 

  8. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, J. Am. Chem. Soc. 124, 12954 (2002)

    Article  CAS  Google Scholar 

  9. H.Y. Park, H.Y. Go, K. Satish, S.M. Rajaram, S.H. Han, M.Y. Yoon, Anal. Chem. 81, 4280 (2009)

    Article  CAS  Google Scholar 

  10. H.B. Zeng, W.P. Cai, P.S. Liu, X.X. Xu, H.J. Zhou, C. Klingshirn, H. Kalt, ACS Nano 2, 1661 (2008)

    Article  CAS  Google Scholar 

  11. T. Tan, Y. Li, Y. Liu, B. Wang, X.M. Song, E. Li, H. Wang, H. Yan, Mater. Chem. Phys. 111, 305 (2008)

    Article  CAS  Google Scholar 

  12. Y.H. Jang, S.T. Kochuveedu, M.A. Cha, Y.J. Jang, J.Y. Lee, J. Lee, J. Kim, Y. Ryudu, D.H. Kim, J. Colloid Interface Sci. 345, 125 (2010)

    Article  CAS  Google Scholar 

  13. D. Lin, H. Wu, R. Zhang, W. Pan, Chem. Mater. 21, 3479 (2009)

    Article  CAS  Google Scholar 

  14. J.X. Li, J.H. Xu, W.L. Dai, K.N. Fan, J. Phys. Chem. C 113, 8343 (2009)

    Article  CAS  Google Scholar 

  15. E. Stathatos, P. Lianos, P. Falaras, A. Siokou, Langmuir 16, 2398 (2000)

    Article  CAS  Google Scholar 

  16. R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, G.S. Kim, G. Khang, H.S. Shin, Mater. Res. Bull. 42, 1640 (2007)

    Article  CAS  Google Scholar 

  17. R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, H.S. Shin, Appl. Surf. Sci. 25, 7622 (2007)

    Article  Google Scholar 

  18. R. Wahab, S.G. Ansari, Y.S. Kim, G. Khang, H.S. Shin, Appl. Surf. Sci. 254, 2037 (2008)

    Article  CAS  Google Scholar 

  19. American Society for Testing and Material, Powder Diffraction Files; Joint Committee on Powder Diffraction Standards, (Swarthmore, PA: The Committee, 1999), pp. 3–888

  20. J. Fan, R. Freer, J. Appl. Phys. 77, 4795 (1995)

    Article  CAS  Google Scholar 

  21. D. Blinks, J. Grimes, J. Am. Ceram. Soc. 74, 2370 (1993)

    Article  Google Scholar 

  22. J. Wang, L. Meng, Y. Qi, M. Li, G. Shi, M. Liu, J. Cryst. Growth 311, 2303 (2009)

    Google Scholar 

  23. B. Karthikeyan, T. Pandiyarajan, J. Lumin. 130, 2317 (2010)

    Article  CAS  Google Scholar 

  24. P. Che, W. Liu, L. Guo, L. He, C. Chen, J. Magn. Magn. Mater. 320, 2563 (2008)

    Article  CAS  Google Scholar 

  25. M. El-Hilo, A.A. Dakhel, A.Y. Ali-Mohamed, J. Magn. Magn. Mater. 321, 2279 (2009)

    Article  CAS  Google Scholar 

  26. J. Wang, P. Liu, X. Fu, Z. Li, W. Han, X. Wang, Langmuir 25, 1218 (2009)

    Article  CAS  Google Scholar 

  27. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J. Voigt, Appl. Phys. Lett. 68, 403 (1996)

    Article  CAS  Google Scholar 

  28. Y. Zhang, Z. Zhang, B. Lin, Z. Fu, J. Xu, J. Phys. Chem. B. 109, 19200 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 61274064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmei Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Zhang, H., Wang, X. et al. Optical properties of Ag doped ZnO nanocrystals prepared by hydrothermal and photodeposition method. J Mater Sci: Mater Electron 24, 3430–3434 (2013). https://doi.org/10.1007/s10854-013-1266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1266-3

Keywords

Navigation