Skip to main content
Log in

Studies of structural, spectroscopic and electrical properties of sodium molybdate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Anhydrous polycrystalline sodium molybdate (Na2MoO4) ceramics has been prepared by a solid-state reaction technique. The formation of the compound in cubic system is confirmed by a preliminary structural analysis using X-ray diffraction data. Energy dispersive spectrum analysis of Na2MoO4 has confirmed its chemical formula and composition. Spectroscopic studies of the compound have been carried by a vibration spectroscopy (Raman/FTIR) in order to understand its molecular structure at microscopic level. The complex impedance spectroscopy technique has been used to study the electrical properties of the material as a function of frequency (102–106 Hz) at different temperatures (23–450 °C), and also to investigate the fundamental mechanism involved in the material. Impedance analysis also indicates that below 300 °C, the material electrical conduction is related to the grain volume. Above 300 °C, the contribution of grain boundary is clearly evident. The electrical processes in the material are found to be temperature-dependent, and due to relaxation phenomena in it. A frequency dependent maximum of the imaginary electrical impedance is found to obey an Arrhenius law with activation energy of 1.07 eV. The frequency dependence of electrical conductivity spectra does follow the universal power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Mathews, D. Krishnamurthy, T. Gnanasekaran, J Nucl Mater. 247, 280 (1997)

    Article  CAS  Google Scholar 

  2. K.C. Emregül, A.A. Aksüt, Corros Sci. 45, 2415 (2003)

    Article  Google Scholar 

  3. M. Fujimoto, Physics of Structural Phase Transitions (Springer, New York, 2005)

    Google Scholar 

  4. S. Sharma, R.N.P. Choudhary, S.R. Shanigrahi, Mat Letts. 40, 134 (1999)

    Article  CAS  Google Scholar 

  5. J. Liu, J. Ma, B. Lin, Y. Ren, X. Jiang, J. Tao, X. Zhu, Ceram Inter. 34, 1557 (2008)

    Article  CAS  Google Scholar 

  6. S. Mukherjee, M. Chakraborty, A.K. Panda, S.C. Bhattacharya, S.P. Moulik, Colloids and surfaces A. Physicochem Eng Aspects 388, 1 (2011)

    Article  CAS  Google Scholar 

  7. Y. Ding, N. Hou, N. Chen, Y. Xia, Rare Met. 25, 316 (2006)

    Article  CAS  Google Scholar 

  8. K. Gesi, J Phys Soc Jpn. 53, 3850 (1984)

    Article  Google Scholar 

  9. S.N. Choudhary, R.N.P. Choudhary, Mat Letts. 34, 411 (1998)

    Article  CAS  Google Scholar 

  10. A.H. Yahaya, A.K. Arof, Mat Sc Eng B. 34, 7 (1995)

    Article  Google Scholar 

  11. O.P. Barinova, S.V. Kirsanova, Glass Ceram. 65, 362 (2008)

    Article  CAS  Google Scholar 

  12. Wu E. POWD: An interactive powder diffraction data interpretation and indexing programme, Ver 2.5, School of Physical Science, Flinders University of South Australia, Bedford Park, SA 5042, Australia

  13. P. Scherrer, Gottin Nachricht. 2, 98 (1918)

    Google Scholar 

  14. M. Seleborg, Acta Chimica Scandinavica. 21, 499 (1967)

    Article  CAS  Google Scholar 

  15. C. Luz Lima, G.D. Saraiva, P.T.C. Freire, M. Maczka, W. Paraguassu, F.F. de Sousa, J. Mendes Filho, J Raman Spectrosc. 42, 799 (2011)

    Article  Google Scholar 

  16. G.D. Saraiva, W. Paraguassu, M. Maczka, P.T.C. Freire, J.A. Lima Jr, C.W.A. Paschoal, J. Mendes Filho, A.G. Souza Filho, J Raman Spectrosc 39, 937 (2008)

    Article  CAS  Google Scholar 

  17. M. Balkanski, R.F. Wallis, E. Haro, Phys Rev B 28, 1928 (1983)

    Article  CAS  Google Scholar 

  18. R.H. Busey, O.L. Keller, J Chem Phys. 41, 215 (1964)

    Article  CAS  Google Scholar 

  19. M.R. Johan, T.K. Han, A.K. Arof, Ionics 16, 323 (2010)

    Article  CAS  Google Scholar 

  20. A. Rulmont, M. Almou, Spectrochim Acta 45A(5), 603 (1989)

    CAS  Google Scholar 

  21. M.E. Poloznikova, O.I. Kondratov, V.V. Fomichev, Zh Neorg Khim. 33(10), 2526 (1988)

    CAS  Google Scholar 

  22. A.J. Marchi, E.J. Lede, F.G. Requejo, M. Renteria, S. Irusta, E.A. Lombardo, E.E. Miro, Catal Lett. 48(1–2), 47 (1997)

    Article  CAS  Google Scholar 

  23. C. Bharti, A. Dutta, T.P. Sinha, Mat Res Bull. 43, 1246 (2008)

    Article  Google Scholar 

  24. S.K. Bera, S.K. Barik, R.N.P. Choudhary, P.K. Bajpai, Bull Mater Sci. 35(1), 47 (2011)

    Article  Google Scholar 

  25. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phy Stat Sol a. 201(3), 588 (2004)

    Article  CAS  Google Scholar 

  26. J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems (Wiley, New York, 1987)

    Google Scholar 

  27. A.K. Jonscher, Nature 264, 673 (1977)

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out at the Ferroelectric Laboratory, Department of Physics and Meteorology and Central Research Facility of IIT Kharagpur. The facilities availed at IIT Kharagpur and discussions among the research group are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrat Kumar Barik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, S., Barik, S.K. & Choudhary, R.N.P. Studies of structural, spectroscopic and electrical properties of sodium molybdate ceramics. J Mater Sci: Mater Electron 24, 3359–3364 (2013). https://doi.org/10.1007/s10854-013-1255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1255-6

Keywords

Navigation