Skip to main content

Advertisement

Log in

Enhancing energy storage density of (Ba, Sr)TiO3 ceramic particles by coating with Al2O3 and SiO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric and energy storage properties of Ba0.4Sr0.6TiO3 particles coated by Al2O3 and SiO2 oxide were investigated. Results showed that the dielectric properties and energy storage density were improved apparently. The improvement of the energy storage density can be ascribed to two factors: one was that the breakdown strength was notably improved by the decrease of the porosity and defects; the other was the reduction of the grain size. Furthermore, the optimized composition showed the maximum energy storage density of 5.09 J/cm3, whereas the energy storage density of uncoated Ba0.4Sr0.6TiO3 was only 0.24 J/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U. Syamaprasad, R.K. Galgali, B.C. Mohanty, Mater. Lett. 7, 197–200 (1988)

    Article  CAS  Google Scholar 

  2. S.M. Rhim, S. Hong, H. Bak, O.K. Kim, J. Am. Ceram. Soc. 83, 1145–1148 (2000)

    Article  CAS  Google Scholar 

  3. J.-Y. Ha, J.-W. Choi, C.-Y. Kang, J.-S. Kim, S.-J. Yoon, D.J. Choi, H.-J. Kim, J. Eur. Ceram. Soc. 27, 2747–2751 (2007)

    Article  CAS  Google Scholar 

  4. K. Zhou, S.A. Boggs, R. Ramprasad, M. Aindow, C. Erkey, S.P. Alpay, Appl. Phys. Lett. 93, 102908 (2008)

    Article  Google Scholar 

  5. H. Jiang, J. Zhai, J. Zhang, X. Yao, J. Am. Ceram. Soc. 92, 2319–2322 (2009)

    Article  CAS  Google Scholar 

  6. S. Chao, F. Dogan, Mater. Lett. 65, 978–981 (2011)

    Article  CAS  Google Scholar 

  7. N. Fletcher, A. Hilton, B. Ricketts, J. Phys. D Appl. Phys. 29, 253 (1996)

    Article  CAS  Google Scholar 

  8. Z.-Y. Shen, W.-Q. Luo, Y.-M. Li, Q.-G. Hu, Z.-M. Wang, X.-Y. Gu, J. Mater. Sci.: Mater. Electron. 24, 607–612 (2013)

    Article  CAS  Google Scholar 

  9. Z.-Y. Shen, Y.-M. Li, W.-Q. Luo, Z.-M. Wang, X.-Y. Gu, R.-H. Liao, J. Mater. Sci.: Mater. Electron. 24, 704–710 (2013)

    Article  CAS  Google Scholar 

  10. A. Kukreti, A. Kumar, U. Naithani, Indian J. Pure Appl. Phys. 49, 126–131 (2011)

    CAS  Google Scholar 

  11. I. Burn, D.M. Smyth, J. Mater. Sci. 7, 339–343 (1972)

    Article  CAS  Google Scholar 

  12. G. Dong, S. Ma, J. Du, J. Cui, Ceram. Int. 35, 2069–2075 (2009)

    Article  CAS  Google Scholar 

  13. Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, Int. J. Appl. Ceram. Technol. 7, E124–E128 (2010)

    Article  Google Scholar 

  14. Q. Zhang, L. Wang, J. Luo, Q. Tang, J. Du, J. Am. Ceram. Soc. 92, 1871–1873 (2009)

    Article  CAS  Google Scholar 

  15. S. Mornet, C. Elissalde, V. Hornebecq, O. Bidault, E. Duguet, A. Brisson, M. Maglione, Chem. Mater. 17, 4530–4536 (2005)

    Article  CAS  Google Scholar 

  16. T. Wang, F. Gao, G. Hu, C. Tian, J. Alloy. Compd. 504, 362–366 (2010)

    Article  CAS  Google Scholar 

  17. J.Q. Qi, H.Y. Tian, Y. Wang, G.K.H. Pang, L.T. Li, H.L.W. Chan, J. Phys. Chem. B 109, 14006–14010 (2005)

    Article  CAS  Google Scholar 

  18. R. Chen, A. Cui, X. Wang, L. Li, Mater. Sci. Eng., B 99, 302–305 (2003)

    Article  Google Scholar 

  19. J. Qi, Y. Wang, W. Chen, L. Li, H. Chan, J. Solid State Chem. 178, 279–284 (2005)

    Article  CAS  Google Scholar 

  20. C. Xu, B. Shen, J. Zhai, Key Eng. Mater. 512–515, 1635–1640 (2012)

    Article  Google Scholar 

  21. B.R. Priya Rani, M.T. Sebastian, J. Mater. Sci.: Mater. Electron. 19, 39–44 (2008)

    Article  CAS  Google Scholar 

  22. J.F. Fernández, A.C. Caballero, P. Durán, C. Moure, J. Mater. Sci. 31, 975–981 (1996)

    Article  Google Scholar 

  23. T.I. Shakhtakhtinsky, IEEE Trans. Dielectr. Electr. Insul. 4, 813–815 (1997)

    Article  CAS  Google Scholar 

  24. N. Wada, T. Hiramatsu, T. Tamura, Y. Sakabe, Ceram. Int. 34, 933–937 (2008)

    Article  CAS  Google Scholar 

  25. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Physical Review B. 70, 024107 (2004)

    Article  Google Scholar 

  26. M.W. Cole, P.C. Joshi, M.H. Ervin, M.C. Wood, R.L. Pfeffer, Thin Solid Films 374, 34–41 (2000)

    Article  CAS  Google Scholar 

  27. B.L. Cheng, B. Su, J.E. Holmes, T.W. Button, M. Gabbay, G. Fantozzi, J. Electroceram. 9, 17–23 (2002)

    Article  Google Scholar 

  28. J.G. Fisher, B.-K. Lee, A. Brancquart, S.-Y. Choi, S.-J.L. Kang, J. Eur. Ceram. Soc. 25, 2033–2036 (2005)

    Article  CAS  Google Scholar 

  29. B. Chu, Z. Xin, B. Neese, Q.M. Zhang, F. Bauer, IEEE Trans. Dielectr. Electr. Insul. 13, 1162–1169 (2006)

    CAS  Google Scholar 

  30. E.P. Gorzkowski, M.J. Pan, B.A. Bender, C. Wu, J. Am. Ceram. Soc. 91, 1065–1069 (2008)

    Article  CAS  Google Scholar 

  31. E.K. Beauchamp, J. Am. Ceram. Soc. 54, 484–487 (1971)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from National Key Fundamental Research Program (973) (2009CB623302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwei Zhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Xu, C., Shen, B. et al. Enhancing energy storage density of (Ba, Sr)TiO3 ceramic particles by coating with Al2O3 and SiO2 . J Mater Sci: Mater Electron 24, 3309–3314 (2013). https://doi.org/10.1007/s10854-013-1248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1248-5

Keywords

Navigation