Skip to main content
Log in

Effect of Gd-substitution on dielectric and transport properties of lead zirconate titanate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The gadolinium (Gd)-modified lead zirconate titanate (i.e., Pb1−xGdx (Zr0.65Ti0.35)1−x/4O3; x = 0, 0.07, 0.10 and 0.12) ceramics have been synthesized using a high-temperature (~1,100 °C) solid-state reaction route. Preliminary X-ray structural studies show the formation of single-phase compounds in the tetragonal crystal system. Scanning electron micrographs of the surface of pellet samples show uniform distribution of grains of different shape and size with few voids. It is interesting to observe the significant effect of Gd-substitution on the nature, size, and distribution of grains, and the density of samples. Detailed analysis of dielectric properties of the materials indicates that the materials are non-relaxor but have diffused ferroelectric phase transition. The temperature and frequency dependence of conductivity follows Jonscher’s universal power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Bruno, A. Poggialini, G. Felice, Design and calibration of a piezoelectric actuator for interferometric applications. Opt. Lasers Eng. 45, 1148 (2007)

    Article  Google Scholar 

  2. A. Hirt, Printing with ferroelectric ceramics. Ferroelectrics 201, 1 (1997)

    Article  CAS  Google Scholar 

  3. S.G. Porter, Materials for pyroelectric detectors. Mater. Des. 8, 120 (1978)

    Article  Google Scholar 

  4. P. Muralt, Recent progress in materials issues for piezoelectric MEMS. J. Am. Ceram. Soc. 91, 1385 (2008)

    Article  CAS  Google Scholar 

  5. K. Carl, K. Geisen, Dielectric and optical properties of quasi-ferroelectric PLZT ceramic. Proc. IEEE 63, 967 (1973)

    Article  Google Scholar 

  6. G.H. Heartling, C.E. Land, Hot-pressed (Pb, La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications. J. Am. Ceram. Soc. 54, 1 (1971)

    Article  Google Scholar 

  7. S. Dutta, R.N.P. Choudhary, P.K. Sinha, Impedance spectroscopic studies on Fe3+ ion modified PLZT ceramics. Ceram. Int. 33, 13 (2007)

    Article  CAS  Google Scholar 

  8. Eric Bocher, Benoit Guiffard, Laurent Lebrun, Daniel Guyomar, Effects of Zr/Ti ratio on structural, dielectric and piezoelectric properties of Mn- and (Mn, F)-doped lead zirconate titanate ceramics. Ceram Int. 32, 479 (2006)

    Article  Google Scholar 

  9. S.K.S. Parasar, R.N.P. Choudhary, B.S. Murty, Electrical properties of Gd-doped PZT nanoceramic synthesized by high energy ball milling. Mater. Sci. Eng. B 110, 58 (2004)

    Article  Google Scholar 

  10. C.E. Land, P. Thatcher, G.H. Haertling, Electro-optic ceramics, in Advances in Materials and Device Research, vol. 4, ed. by R. Wolfe (Academic, New York, 1974), pp. 137–233

    Google Scholar 

  11. H. Liu, H. Toraya, Study on new tetragonal phase of Nb–doped lead titanate zirconate by synchrotron X-ray powder diffraction. J. Phys. Chem. Solids 60, 729 (1999)

    Article  CAS  Google Scholar 

  12. S.K. Sinha, R.N.P. Choudhary, S.N. Choudhary, Phase transition in Pb(Mn1/4Cd1/4W1/2)O3 ceramics. Mater. Chem. Phys. 78, 432 (2002)

    Article  Google Scholar 

  13. E. Wu, POWD, An Interactive Powder Diffraction Data Interpretation, Indexing Programme, version 2.2, School of Physical Science, Flinder University of South Australia Bedford Park, SA, Australia

  14. K.H. Härdtl, D. Hennings, Distribution of A-site and B-site vacancies in (Pb, La) (Ti, Zr) O3 ceramics. J. Am. Ceram. Soc. 55, 230 (1972)

    Article  Google Scholar 

  15. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley-Interscience, New York, 1974)

    Google Scholar 

  16. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, Oxford, 1977

  17. S.L. Swartz, T.R. Shrout, Fabrication of perovskite lead magnesium niobate. Mater. Res. Bull. 17, 1245 (1982)

    Article  CAS  Google Scholar 

  18. C. Kittel, Introduction to Solid State Physics, Wiley, UK

  19. I. Chen, P. Li, Y. wang, Structural origin of relaxor pervoskites. J. Phys. Chem. Solids 57, 1525 (1966)

    Google Scholar 

  20. S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, Diffuseness as a useful parameter for relaxor ceramics. J. Am. Ceram. Soc. 73, 3122 (1990)

    Article  CAS  Google Scholar 

  21. G.H. Heartling, Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 84, 797 (1999)

    Article  Google Scholar 

  22. C.G.F. Strenger, A.J. Burggraff, Study of phase transitions and properties of tetragonal (Pb, La) (Zr, Ti) O3 ceramics—I: phase diagram and β-phase. J. Phys. Chem. Solids 41, 25 (1980)

    Article  Google Scholar 

  23. B.A. Boukamp, M.T.N. Pham, D.H.A. Blank, H.J.M. Bouwmeester, Ionic and electronic conductivity in lead-zirconate-titanate (PZT). Sol State Ionics 170, 239 (2004)

    Article  CAS  Google Scholar 

  24. O. Raymond, R. Font, N. Suarez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb (Fe1/2Nb1/2)O3 ceramics obtained by different precursors. Part 1 structural and thermo-electrical characterization. J. Appl. Phys. 97, 084107 (2005)

    Article  Google Scholar 

  25. J. Portelles, N.S. Almodovar, J. Fuentes, O. Raymond, J. Heiras, J.M. Siqueiros, AC conductivity in Gd doped Pb(Zr0.53Ti0.57)O3 ceramics. J. Appl. Phys. 104, 073511 (2008)

    Article  Google Scholar 

  26. V.M. Fridkin, Ferroelectric Semiconductors (Consultant Bureau, New York, 1980)

    Google Scholar 

  27. A.K. Jonscher, The universal dielectric responses. Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  28. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  29. Z. Lu, J.P. Bonnet, J. Ravez, P. Hagenmuller, Correlation between low frequency dielectric dispersion (LFDD) and impedance relaxation in ferroelectric ceramic Pb2KNb4TaO15. Solid State lon. 57, 235 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush R. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panigrahi, S.C., Das, P.R., Parida, B.N. et al. Effect of Gd-substitution on dielectric and transport properties of lead zirconate titanate ceramics. J Mater Sci: Mater Electron 24, 3275–3283 (2013). https://doi.org/10.1007/s10854-013-1243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1243-x

Keywords

Navigation