Skip to main content
Log in

Structural transition of ZnO thin films produced by RF magnetron sputtering at low temperatures

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) thin films were prepared using reactive radio-frequency magnetron sputtering of a pure metallic zinc target onto glass substrates. The evolution of the surface morphology and the optical properties of the films were studied as a function of the substrate temperature, which was varied from 50 to 250 °C. The surface topography of the samples was examined using atomic force microscopy (AFM), and their optical properties were studied via transmittance measurements in the UV–Vis–NIR region. DRX and AFM analyses showed that the surface morphology undergoes a structural transition at substrate temperatures of around 150 °C. Actually, at 50 °C the formation of small grains was observed while at 250 °C the grains observed were larger and had more irregular shapes. The optical gap remained constant at ~3.3 eV for all films. In the visible region, the average optical transmittance was 80 %. From these results, one can conclude that the morphological properties of the ZnO thin films were more greatly affected by the substrate temperature, due to mis-orientation of polycrystalline grains, than were the optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Ellmer, in Handbook of Transparent Conductors, ed. by D.S. Ginley, H. Hosono, D.C. Painechap. Transparent conductive zinc oxide and its derivatives, 1st edn (Springer, Berlin, 2011)

  2. M. Yuste, R. Escobar Galindo, I. Caretti, R. Torres, O. Sanchez, J. Phys. D Appl. Phys. 45, 025303 (2012)

    Article  Google Scholar 

  3. S. Youssef, P. Combette, J. Podlecki, R.Al Asmar, A.S. Foucaran, Cryst. Growth Des. 9, 1088–1094 (2009)

    Article  CAS  Google Scholar 

  4. T. Kuchiyama, K. Yamamoto, S. Hasegawa, H. Asahi, Appl. Surf. Sci. 258, 1488–1490 (2011)

    Article  CAS  Google Scholar 

  5. Y.H. Jo, B.C. Mohanty, Y.S. Cho, J. Am. Ceram. Soc. 92, 665–670 (2009)

    Article  CAS  Google Scholar 

  6. E. Vasco, C. Zaldo, L. Vázquez, J. Phys.: Condens. Matter 13, L663–L672 (2001)

    Article  CAS  Google Scholar 

  7. W. Mtangi, F.D. Auret, P.J. Janse van Rensburg, S.M.M. Coelho, M.J. Legodi, J.M. Nel, W.E. Meyer, A. Chawanda, J. Appl. Phys. 110, 094504 (2011)

    Article  Google Scholar 

  8. Y.-S. Choi, D.-K. Hwang, B.-J. Kwon, J.-W. Kang, Y.-H. Cho, S.-J. Park, Jpn. J. Appl. Phys. 50, 105502 (2011)

    Article  Google Scholar 

  9. E. Sonmez, S. Aydin, M. Yilmaz, M.T. Yurtcan, T. Karacali, M. Ertugrul, J. Nanomater. 2012, 05 (2011)

    Google Scholar 

  10. R. Ondo-Ndong, G. Ferblantier, M. Al Kalfioui, A. Boyer, A. Foucaran, J. Cryst. Growth 255, 130–135 (2003)

    Article  CAS  Google Scholar 

  11. S. Singh, R.S. Srinivasa, S.S. Major, Thin Solid Films 515, 8718–8722 (2007)

    Article  CAS  Google Scholar 

  12. H.F. Liu, S.J. Chua, G.X. Hu, H. Gong, N. Xiang, J. Appl. Phys. 102, 083529 (2007)

    Article  Google Scholar 

  13. C.-A. Tseng, J.-C. Lin, Y.-F. Chang, S.-D. Chyou, K.-C. Peng, Appl. Surf. Sci. 258, 5996–6002 (2012)

    Article  CAS  Google Scholar 

  14. S.-S. Lin, J.-L. Huang, D.-F. Lii, Surf. Coat. Technol. 176, 173–181 (2004)

    Article  CAS  Google Scholar 

  15. K. Koski, J. Hölsä, P. Juliet, Thin Solid Films 339, 240 (1999)

    Article  CAS  Google Scholar 

  16. Y. Kajikawa, J. Cryst. Growth 289, 387–394 (2006)

    Article  CAS  Google Scholar 

  17. R. Álvarez, A. Palmero, L.O. Prieto-López, F. Yubero, J. Cotrino, W. de la Cruz, H. Rudolph, F.H.P.M. Habraken, A.R. Gonzalez-Elipe, J. Appl. Phys. 107, 054311 (2010)

    Article  Google Scholar 

  18. F. Paraguay, W. Estrada, D.R. Acosta, E. Andrade, M. Miki-Yoshida, Thin Solid Films 350, 192–202 (1999)

    Article  Google Scholar 

  19. S.-S. Lin, J.L. Huang, Surf. Coat. Technol. 185, 222–227 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Brazilian agencies FAPESP (Proc. 2008/53311-5) and CNPq is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. R. Bortoleto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosa, A.M., da Silva, E.P., Chaves, M. et al. Structural transition of ZnO thin films produced by RF magnetron sputtering at low temperatures. J Mater Sci: Mater Electron 24, 3143–3148 (2013). https://doi.org/10.1007/s10854-013-1237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1237-8

Keywords

Navigation