Skip to main content
Log in

Effect of substrate and catalyst on the transformation of carbon black into nanotubes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Structural transformation of carbon black (CB) into nanotubes and nano-onion like structures in the presence of bimetallic catalysts (Fe and Ni) is reported and the influence of the substrate (alumina and stainless steel) in the structural transformation is studied. In addition, the importance of a specific weight ratio of CB to catalyst in the transformation of amorphous CB into graphitic nanostructures is verified. The experiments were carried out at 1,000 °C in a horizontal tube furnace under N2 atmosphere. The samples were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy and also thermomagnetic analysis (Curie-temperature determinations) were done to assess thermally induced magnetic phase changes. All the characterization techniques showed the resulting structures were influenced by the substrate and weight ratio for CB to catalysts. However, there was no significant difference in the magnetic performance of the resulting structures obtained on different substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  2. D.S. Bethune, C.H. Klang, M.S. de Vries et al., Nature 363, 605 (1993)

    Article  CAS  Google Scholar 

  3. R. Ehlich, L.P. Biro, I.V. Hertel, Synth. Met. 103, 2486 (1999)

    Article  CAS  Google Scholar 

  4. F. Kokai, I. Nozaki, T. Okada, A. Koshio, T. Kuzumaki, Carbon 49, 1173 (2011)

    Article  CAS  Google Scholar 

  5. J.L. Li, L.J. Wang, G.Z. Bai, W. Jiang, Scripta Mater. 54, 93 (2006)

    Article  CAS  Google Scholar 

  6. P. Mahanandia, P.N. Vishwakarma, K.K. Nanda et al., Mater. Res. Bull. 41, 2311 (2006)

    Article  CAS  Google Scholar 

  7. B.S. Martin, B.K.T. Kenneth, G.L. Rodrigo, W.I. Milne, B.H. David, M. Meyyappan, Pure Appl. Chem. 78, 1117 (2006)

    Article  Google Scholar 

  8. R. Sen, S. Suzuki, H. Kataura, Y. Achiba, Chem. Phys. Lett. 349, 383 (2001). doi:10.1016/s0009-2614(01)01208-8

    Article  CAS  Google Scholar 

  9. M.M. Shaijumon, S. Ramaprabhu, Chem. Phys. Lett. 374, 513 (2003). doi:10.1016/s0009-2614(03)00741-3

    Article  CAS  Google Scholar 

  10. D. Tang, L. Sun, J. Zhou, W. Zhou, S. Xie, Carbon 43, 2812 (2005). doi:10.1016/j.carbon.2005.05.034

    Article  CAS  Google Scholar 

  11. Y.-H. Wang, S.-C. Chiu, K.-M. Lin, Y.-Y. Li, Carbon 42, 2535 (2004). doi:10.1016/j.carbon.2004.05.028

    Article  CAS  Google Scholar 

  12. S. Wei, W.P. Kang, J.L. Davidson, J.H. Huang, Diam. Relat. Mater. 15, 1828 (2006). doi:10.1016/j.diamond.2006.09.010

    Article  CAS  Google Scholar 

  13. T.S. Wong, C.T. Wang, K.H. Chen, L.C. Chen, K.J. Ma, Diam. Relat. Mater. 10, 1810 (2001). doi:10.1016/s0925-9635(01)00454-x

    Article  CAS  Google Scholar 

  14. N.M. Rodriguez, J. Mater. Res. 8, 3233 (1993)

    Article  CAS  Google Scholar 

  15. C.P. Deck, K. Vecchio, Carbon 44, 267 (2006). doi:10.1016/j.carbon.2005.07.023

    Article  CAS  Google Scholar 

  16. W. Shen, F.E. Huggins, N. Shah et al., Appl. Catal. A 351, 102 (2008). doi:10.1016/j.apcata.2008.09.004

    Article  CAS  Google Scholar 

  17. G. Luo, Z. Li, F. Wei, L. Xiang, X. Deng, Y. Jin, Phys. B 323, 314 (2002). doi:10.1016/s0921-4526(02)01039-6

    Article  CAS  Google Scholar 

  18. T. Tsoufis, P. Xidas, L. Jankovic et al., Diam. Relat. Mater. 16, 155 (2007). doi:10.1016/j.diamond.2006.04.014

    Article  CAS  Google Scholar 

  19. W. Qian, T. Liu, Z. Wang et al., Carbon 41, 2487 (2003)

    Article  CAS  Google Scholar 

  20. S.P. Doherty, R.P.H. Chang, Appl. Phys. Lett. 81, 2466 (2002)

    Article  CAS  Google Scholar 

  21. S. Kishinevsky, S.I. Nikitenko, D.M. Pickup, E.R.H. van-Eck, A. Gedanken, Chem. Mater. 14, 4498 (2002)

    Article  CAS  Google Scholar 

  22. D.B. Buchholz, S.P. Doherty, R.P.H. Chang, Carbon 41, 1625 (2003). doi:10.1016/s0008-6223(03)00110-6

    Article  CAS  Google Scholar 

  23. Z.-G. Chen, F. Li, W.-C. Ren et al., Nanotechnology 17, 3100 (2006)

    Article  CAS  Google Scholar 

  24. J.B. Donnet, H. Oulanti, T. Le Huu, Diam. Relat. Mater. 17, 1506 (2008). doi:10.1016/j.diamond.2008.01.001

    Article  CAS  Google Scholar 

  25. W. Lian, H. Song, X. Chen et al., Carbon 46, 525 (2008)

    Article  CAS  Google Scholar 

  26. A. Govindaraj, C.N.R. Rao, Pure Appl. Chem. 74, 1571 (2002)

    Article  CAS  Google Scholar 

  27. C.N.R. Rao, A. Govindaraj, Acc. Chem. Res. 35, 998 (2002)

    Article  CAS  Google Scholar 

  28. A. Leela Mohana Reddy, S. Ramaprabhu, Nanoscale Res. Lett. 3, 76 (2008)

    Article  Google Scholar 

  29. A. Leela Mohana Reddy, M.M. Shaijumon, S. Ramaprabhu, Nanotechnology 17, 5299 (2006)

    Article  Google Scholar 

  30. A. Bianco, K. Kostarelos, M. Prato, Curr. Opin. Chem. Biol. 9, 674 (2005). doi:10.1016/j.cbpa.2005.10.005

    Article  CAS  Google Scholar 

  31. D.-C. Li, L. Dai, S. Huang, A.W.H. Mau, Z.L. Wang, Chem. Phys. Lett. 316, 349 (2000). doi:10.1016/s0009-2614(99)01334-2

    Article  CAS  Google Scholar 

  32. P.M. Ajayan, S. Iijima, Nature 361, 333 (1993)

    Article  CAS  Google Scholar 

  33. P.J.F. Harris, Carbon nanotube science (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  34. R.L. Vander Wal, T.M. Ticich, V.E. Curtis, Carbon 39, 2277 (2001). doi:10.1016/s0008-6223(01)00047-1

    Article  Google Scholar 

  35. P.A. Marsh, A. Voet, T.J. Mullens, L.D. Price, Carbon 9, 797 (1971). doi:10.1016/0008-6223(71)90013-3

    Article  CAS  Google Scholar 

  36. J.W. Ward, B.Q. Wei, P.M. Ajayan, Chem. Phys. Lett. 376, 717 (2003). doi:10.1016/s0009-2614(03)01067-4

    Article  CAS  Google Scholar 

  37. R. Lv, A. Cao, F. Kang et al., J. Phys. Chem. C 111, 11475 (2007)

    Article  CAS  Google Scholar 

  38. G. Ovejero, J.L. Sotelo, M.D. Romero et al., Ind. Eng. Chem. Res. 45, 2206 (2006)

    Article  CAS  Google Scholar 

  39. H. Wu, C. Qian, Y. Cao et al., J. Phys. Chem. Solids 71, 290 (2010)

    Article  CAS  Google Scholar 

  40. L. Liu, Y. Qin, Z.-X. Guo, D. Zhu, Carbon 41, 331 (2003). doi:10.1016/s0008-6223(02)00286-5

    Article  CAS  Google Scholar 

  41. H. Hiura, T.W. Ebbesen, K. Tanigaki, H. Takahashi, Chem. Phys. Lett. 202, 509 (1993)

    Article  CAS  Google Scholar 

  42. J. Sengupta, C. Jacob, J. Nanopart. Res. 12, 457 (2010)

    Article  CAS  Google Scholar 

  43. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007)

    Article  CAS  Google Scholar 

  44. M.A. van Zuilen, D. Fliegel, R. Wirth et al., Geochim. Cosmochim. Acta 83, 252 (2012). doi:10.1016/j.gca.2011.12.030

    Article  Google Scholar 

  45. G. Cacciamani, A. Dinsdale, M. Palumbo, A. Pasturel, Intermetallics 18, 1148 (2010). doi:10.1016/j.intermet.2010.02.026

    Article  CAS  Google Scholar 

  46. W.-H. Chiang, R.M. Sankaran, Carbon 50, 1044 (2012). doi:10.1016/j.carbon.2011.10.008

    Article  CAS  Google Scholar 

  47. E.F. Kukovitsky, S.G. L’Vov, N.A. Sainov, V.A. Shustov, L.A. Chernozatonskii, Chem. Phys. Lett. 355, 497 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was partially funded by NFR and Carbontech Holding AS. The authors would like to thank Boobalan Kasilingam, School of advanced studies, VIT, India for his assistance in obtaining XRD results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayshankar Asokan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asokan, V., Velauthapillai, D., Løvlie, R. et al. Effect of substrate and catalyst on the transformation of carbon black into nanotubes. J Mater Sci: Mater Electron 24, 3231–3239 (2013). https://doi.org/10.1007/s10854-013-1233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1233-z

Keywords

Navigation