Skip to main content

Interdiffusion study in the Pd–Pt system

Abstract

Interdiffusion, intrinsic, tracer and impurity diffusion coefficients are calculated in the Pd–Pt system. Interdiffusion coefficients are more or less insensitive to composition change. Activation energy varies in the range of 324–353 kJ/mol. Impurity diffusion coefficients calculated in this study and available tracer diffusion coefficients in pure elements indicate that Pd has higher diffusion rate compared to Pt in pure Pd, whereas, both the elements have similar diffusion rates in Pt. Kirkendall marker experiments indicate that Pd has much higher diffusion rate in Pd3.5at.%Pt compared to Pt.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    S. Nazarpour, M. Chaker, Thin Solid Films 520, 4812 (2012)

    Article  CAS  Google Scholar 

  2. 2.

    S. Thiebaut, A. Bigot, J.C. Achard, B. Limacher, D. Leroy, A. Percheron-Guegan, J. Alloy Compd. 231, 440 (1995)

    Article  CAS  Google Scholar 

  3. 3.

    I. Moysan, V. Paul-Boncour, S. Thiebaut, E. Sciora, J.M. Fournier, R. Cortes, S. Bourgeois, A. Percheron-Guegan, J. Alloy Compd. 322, 14 (2001)

    Article  CAS  Google Scholar 

  4. 4.

    T.B. Massalski ed., Alloy Phase Diagrams, ASM Handbook, 2nd ed. (ASM International, Materials Park, Ohio, United States of America, 1992), 1308

  5. 5.

    C. Matano, Jpn. J. Phys. 8, 109 (1933)

    CAS  Google Scholar 

  6. 6.

    A. Paul, The Kirkendall Effect in Solid State Diffusion, Eindhoven University of Technology, The Netherlands, 2004 (www.alexandria.tue.nl/extra2/200412361.pdf)

  7. 7.

    V.D. Divya, U. Ramamurty, A. Paul, Intermetallics 18, 259 (2010)

    Article  CAS  Google Scholar 

  8. 8.

    J.B. Darby, K.M. Myles, Metall. Trans. 3, 653 (1972)

    Article  CAS  Google Scholar 

  9. 9.

    F. Sauer, V. Freise, Z. Electrochem. 66, 353 (1962)

    CAS  Google Scholar 

  10. 10.

    C. Wagner, Acta Metall. 17, 99 (1969)

    Article  CAS  Google Scholar 

  11. 11.

    F.J.J. Van Loo, Prog. Solid State Chem. 20, 47 (1990)

    Article  Google Scholar 

  12. 12.

    L.S. Darken, Trans. Am. Inst. Min. Metall. Eng. 175, 184 (1948)

    Google Scholar 

  13. 13.

    A. Vignes, C.E. Birchenall, Acta Metall. 16, 1117 (1968)

    Article  CAS  Google Scholar 

  14. 14.

    R. Ravi, A. Paul, J. Mater. Sci. Mater. Electron. 23, 2152 (2012)

    Article  CAS  Google Scholar 

  15. 15.

    S. Santra, A. Paul, Philos. Mag. Lett. 92, 373 (2012)

    Article  CAS  Google Scholar 

  16. 16.

    V.D. Divya, U. Ramamurty, A. Paul, J. Mater. Res. 26, 2384 (2011)

    Article  CAS  Google Scholar 

  17. 17.

    S. Prasad, A. Paul, Defect Diffus. Forum 323, 491 (2012)

    Article  Google Scholar 

  18. 18.

    S. Prasad, A. Paul, Metall. Mater. Trans. A 40, 1512 (2009)

    Article  Google Scholar 

  19. 19.

    V. Divya, U. Ramamurty, A. Paul, Defect Diffus. Forum 312, 466 (2011)

    Article  Google Scholar 

  20. 20.

    V. Divya, S. Balam, U. Ramamurty, A. Paul, Scripta Mater. 62, 621 (2010)

    Article  CAS  Google Scholar 

  21. 21.

    V. Divya, U. Ramamurty, A. Paul, Defect Diffus. Forum 297, 462 (2010)

    Article  Google Scholar 

  22. 22.

    N.L. Peterson, Phys. Rev. Gen. Phys. 136, A568 (1964)

    Article  Google Scholar 

  23. 23.

    G.E. Kidson, R. Ross, Proc. UNESCO Int. Conf. Radioisot. Sci. Res., 1st, Paris p. 185 (1957)

  24. 24.

    F. Cattaneo, F. Grasso, E. Germagnoli, Philos. Mag. 7, 1373 (1962)

    Article  CAS  Google Scholar 

  25. 25.

    A. Paul, A. Kodentsov, F. Van Loo, J. Alloy Compd. 403, 147 (2005)

    Article  CAS  Google Scholar 

  26. 26.

    V.A. Baheti, S. Roy, R. Ravi, A. Paul, Intermetallics 33, 87 (2012)

    Article  Google Scholar 

  27. 27.

    S.S.K. Balam, A. Paul, J. Mater. Sci. 46, 889 (2011)

    Article  CAS  Google Scholar 

  28. 28.

    A. Paul, C. Ghosh, W. Boettinger, Metall. Mater. Trans. A 42, 952 (2011)

    Article  CAS  Google Scholar 

  29. 29.

    A. Paul, A. Kodentsov, G. de With, F. Van Loo, Intermetallics 11, 1195 (2003)

    Article  CAS  Google Scholar 

  30. 30.

    J.R. Manning, Phys. Rev. 124, 470 (1961)

    Article  Google Scholar 

  31. 31.

    J.R. Manning, Metall. Trans. 1, 499 (1970)

    Article  CAS  Google Scholar 

  32. 32.

    J.R. Manning, Acta Metall. 15, 817 (1967)

    Article  CAS  Google Scholar 

  33. 33.

    C.B. Alcock, A. Kubik, Acta Metall. 17, 437 (1969)

    Article  CAS  Google Scholar 

  34. 34.

    J.C. Slater, J. Chem. Phys. 41, 3199 (1964)

    Article  CAS  Google Scholar 

  35. 35.

    T.R. Mattsson, A.E. Mattsson, Phys. Rev. B 66, 1 (2002)

    Article  Google Scholar 

  36. 36.

    Elastic Modulus, www.periodictable.com/Properties/A/YoungModulus.html

  37. 37.

    S. Santra, A. Mondal, A. Paul, Metall. Mater. Trans. A 43, 791 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aloke Paul.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baheti, V.A., Ravi, R. & Paul, A. Interdiffusion study in the Pd–Pt system. J Mater Sci: Mater Electron 24, 2833–2838 (2013). https://doi.org/10.1007/s10854-013-1179-1

Download citation

Keywords

  • Diffusion Couple
  • Partial Molar Volume
  • Interdiffusion Coefficient
  • High Diffusion Rate
  • Tracer Diffusion Coefficient