Skip to main content
Log in

Band gap broadening and photoluminescence properties investigation in Ga2O3 polycrystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ga2O3 thin films were deposited on c-plane Al2O3 substrates by electron beam evaporation equipment. The effects of post anneal treatment on structure and optical properties of Ga2O3 were investigated. The X-ray diffraction (XRD) results of the as-grown and the annealed samples indicated the films consisted with the mix of \(\beta\)-phase polycrystalline and amorphous Ga2O3. The electron diffraction pattern confirmed the existence of the nanocrystal grains. AFM images revealed that the anneal treatment promoted the film crystallization. Both Ga2O3 fims exhibited high transparency from visible light to near infrared region. An obvious band gap broadening phenomenon was observed for the annealed sample comparing with the as-grown sample. The optical band gap of the annealed sample was as large as 5.68 eV, which was inconsistent with the bulk \(\beta\)-phase Ga2O3. Meanwhile, the center of ultraviolet emission peak blue shifted about 0.42 eV for the annealed samples. The mechanism of the band gap broadening effect and ultraviolet emission peak blue shift were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.H. Tippins, Phys. Rev. 140, A316 (1965)

    Article  Google Scholar 

  2. Y. Lv, J. Ma, W. Mi, C. Luan, Z. Zhu, H. Xiao, Vacuum 86, 1850–1854 (2012)

    Article  CAS  Google Scholar 

  3. Y. Kokubun, K. Miura, F. Endo, S. Nakagomi, Appl. Phys. Lett. 90, 031912 (2007)

    Article  Google Scholar 

  4. J.L. Zhao, X.W. Sun, H. Ryu, S.T. Tan, IEEE T. Electron Dev. 58, 1447 (2011)

    Article  CAS  Google Scholar 

  5. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012)

    Article  Google Scholar 

  6. M. Orita, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 77, 4166 (2000)

    Article  CAS  Google Scholar 

  7. R. Suzuki, S. Nakagomi, Y. Kokubun, Appl. Phys. Lett. 98, 131114 (2011)

    Article  Google Scholar 

  8. P. Feng, J.Y. Zhang, Q.H. Li, T.H. Wang, Appl. Phys. Lett. 88, 153107 (2006)

    Article  Google Scholar 

  9. E.G. Víllora, K. Shimamura, K. Kitamura, K. Aok, Appl. Phys. Lett. 88, 031105 (2006)

    Article  Google Scholar 

  10. M. Fleischer, W. Hanrieder, H. Meixner, Thin Solid Films 190, 93 (1990)

    Article  CAS  Google Scholar 

  11. S.L. Ou, D.S. Wuu, Y.C. Fu, S.P. Liu, R.H. Horng, L. Liu, Z.C. Feng, Mater. Chem. Phys. 133, 700 (2012)

    Article  CAS  Google Scholar 

  12. L. Kong, J. Ma, C. Luan, W. Mi, Y. Lv, Thin Solid Films 520, 4270 (2012)

    Article  CAS  Google Scholar 

  13. S. Penner, B. Klötzer, B. Jenewein, F. Klauser, X. Liu, E. Bertel, Thin Solid Films 516, 4742 (2008)

    Article  CAS  Google Scholar 

  14. Y.D. Liu, X.C. Xia, H.W. Liang, H.Z. Zhang, J.M. Bian, Y. Liu, R.S. Shen, Y.M. Luo, G.T. Du, J. Mater, Sci –Mater. Electron 23, 542 (2012)

    CAS  Google Scholar 

  15. H.W. Kim, S.H. Shim, Thin Solid Films 515, 5158 (2007)

    Article  CAS  Google Scholar 

  16. J. Zhang, F. Jiang, Chem. Phys. 289, 243 (2003)

    Article  CAS  Google Scholar 

  17. C.H. Liang, G.W. Meng, G.Z. Wang, Y.W. Wang, L.D. Zhang, Appl. Phys. Lett. 78, 3202 (2001)

    Article  CAS  Google Scholar 

  18. M.B. Sahana, C. Sudakar, A. Dixit, J.S. Thakur, R. Naik, V.M. Naik, Acta Mater. 60, 1072 (2012)

    Article  CAS  Google Scholar 

  19. Kuo-Feng Lin, Hsin-Ming Cheng, Hsu-Cheng Hsu, Li-Jiaun Lin, Wen-Feng Hsieh, Chem. Phys. Lett. 409, 208 (2005)

    Article  CAS  Google Scholar 

  20. X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, J.J. Du, Chem. Phys. Lett. 328, 5 (2000)

    Article  CAS  Google Scholar 

  21. L. Binet, D. Gourier, J. Phys. Chem. Solids 59, 1241 (1998)

    Article  CAS  Google Scholar 

  22. Y.P. Song, H.Z. Zhang, C. Lin, Y.W. Zhu, G.H. Li, F.H. Yang, D.P. Yu, Phys. Rev. B 69, 075304 (2004)

    Article  Google Scholar 

  23. Y.B. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, J–.J. Delaunay, Adv. Funct. Mater. 20, 3972 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by national natural science foundation of China (NO.60976010, NO.61076045, NO.11004020), national high technology research and development program (863 program) (NO.2011AA03A102), the fundamental research funds for the central universities (NO.DUT12LK22, DUT11LK43, DUT11RC(3)45), the research fund for the doctoral program of higher education(No. 20110041120045), the open fund of the state key laboratory of functional materials for informatics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Liang or Guotong Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y., Liang, H., Shen, R. et al. Band gap broadening and photoluminescence properties investigation in Ga2O3 polycrystal. J Mater Sci: Mater Electron 24, 2750–2754 (2013). https://doi.org/10.1007/s10854-013-1165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1165-7

Keywords

Navigation