Skip to main content
Log in

The capacitance–voltage measurement of the screen-printed silicon solar cells with electrochemically etched nanostructured porous silicon antireflection coating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, capacitance–voltage measurement of screen-printed silicon solar cells with electrochemically etched nanostructured porous silicon structure has been investigated. The structural and optical properties of the freshly etched as well as thermally oxidized porous silicon surfaces was characterized by FTIR, Raman spectroscopy, photoluminescence and atomic force spectroscopy measurements. The values of the doping level, NA ≅ 8.4 × 1016 atoms cm−3 in the bulk Si substrate and the built-in potential, Vbi = 0.91 V was estimated by extrapolating the plot of the inverse-square capacitance–reverse bias voltage (I/C2–VR plot). The impedance spectra indicate a significant change in the frequency response of thermally oxidized porous silicon surface which is more distinct in the lower frequency range. The Raman spectra of the etched porous silicon has a sharp peak with a broadening and downshift of phonon energy which indicates that porous silicon is characterized by a nanoscale distribution of the pores and crystallites network and, thereby giving a detailed description on the ‘quantum confinement model’ for the light emission in the visible range from electrochemically etched porous silicon structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The impedance is measured at a number of frequencies and a representation of the Z″ (imaginary part of Z) versus the Z (the real part of the Z) is plotted; the resulting plot is called the Nyquist plot.

References

  1. R.L. Smith, S.D. Collins, J. Appl. Phys. 71(4), R1–R22 (1992)

    Article  CAS  Google Scholar 

  2. A.G. Cullis, L.T. Canham, P.D.J. Calcott, J. Appl. Phys. 82, 909–965 (1997)

    Article  CAS  Google Scholar 

  3. P.N. Vinod, Solid State Commun. 140, 957–961 (2009)

    Article  Google Scholar 

  4. P.N. Vinod, M. Lal, in Proc. 31st IEEE Photovoltaic Specialists Conf. (PVSC) (2004)

  5. P.N. Vinod, J. Mater. Sci. Mater. Electron. 21, 731–736 (2010)

    Article  Google Scholar 

  6. P.N. Vinod, J. Alloys Compd. 470, 393–396 (2009)

    Article  CAS  Google Scholar 

  7. K. Imai, Solid State Electron. 24, 159–164 (1981)

    Article  CAS  Google Scholar 

  8. P.N. Vinod, Sci. Technol. Adv. Mater. 8, 231–236 (2007)

    Article  CAS  Google Scholar 

  9. S.M. Sze, The physics of the semiconductor devices’ (Wiley, New York, 1982)

    Google Scholar 

  10. R.A. Kumar, M.S. Suresh, J. Nagaraju, Rev. Sci. Instrum. 74(7), 3516–3519 (2003)

    Article  CAS  Google Scholar 

  11. F. Recart, A. Cuevas, IEEE Trans. Electron Devices 53(3), 442–448 (2006)

    Article  CAS  Google Scholar 

  12. R.A. Kumar, M.S. Suresh, J. Nagaraju, Rev. Sci. Instrum. 72(8), 3422–3426 (2001)

    Article  CAS  Google Scholar 

  13. P.N. Vinod, M. Lal, J. Mater. Sci. Mater. Electron. 16, 1–6 (2005)

    Article  CAS  Google Scholar 

  14. O. Bisi, S. Ossicini, L. Pavesi, Surf. Sci. Rep. 38, 126 (2000)

    Article  Google Scholar 

  15. M.I.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Chew, A.G. Cullis, J. Crystal Growth 63, 633–636 (1985)

    Google Scholar 

  16. L.T. Canham, Properties of Porous Silicon (INSPEC, London, 1997), pp. 400–407

    Google Scholar 

  17. P.N. Vinod, Ph.D Thesis, ‘Processing and characterization of p-n junction based silicon solar cells’, University of Delhi, (2003)

  18. P. Menna, G. Di Francia, V. La Ferrara, Sol. Energy Mater. Sol. Cells 37, 13–27 (1994)

    Google Scholar 

  19. L. Pavesi, V. Mulloni, J. Lumin 80, 43 (1999)

    Article  Google Scholar 

  20. L. Stalmans, J. Poortmans, H. Bender, M. Caymax, K. Said, E. Vazsonyi, J. Nijs, R. Mertens, Prog. Photovolt. Res. Appl. 6, 232–344 (1998)

    Article  Google Scholar 

  21. G. Lorendal, R. Romanstrain, S. Barret, J. Appl. Phys. 81, 6171–6178 (1997)

    Article  Google Scholar 

  22. O.N. Pierron, D.D. MacDonald, C.L. Muhlstein, Appl. Phys. Lett., 86, 211919 (3p) (2005)

    Google Scholar 

  23. D.K. Schroder, Semiconductor Materials and Device Characterization, 2nd edn. (Wiley, New York, 1998)

    Google Scholar 

  24. J.C. Irwin, Bell Syst. Tech. J. 41, 387–390 (1962)

    Google Scholar 

  25. R. Anilkumar, M.S. Suresh, J. Nagaraju, IEEE Trans. Electron Devices 48(9), 2177–2179 (2001)

    Article  Google Scholar 

  26. I. Mora-sero, G. Garcia-Belmonte, P.P. Boix, M.A. Vasquez, J. Bisquert, Energy Environ. Sci. 2, 678–686 (2009)

    Article  CAS  Google Scholar 

  27. F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, M. Grätzel, J. Phys. Chem. C 111, 6550–6560 (2007)

    Article  CAS  Google Scholar 

  28. Byoung.-Yong. Chang, Su.-Moon. Park, Ann. Rev.Anal. Chem. 3, 207–229 (2010)

    Article  CAS  Google Scholar 

  29. E. Barsoukov, J. Ross Macdonald (eds.) Impedance Spectroscopy Theory Experiment and Applications, Wiley-Interscience, Wiley, New York (2005)

  30. J. Ross Macdonald, Ann. Biomed. Eng. 20, 289–305 (1992)

    Article  Google Scholar 

  31. Q. Wang, J.E. Moser, M. Grätzel, J. Phys. Chem. B 109, 14945–14953 (2005)

    Article  CAS  Google Scholar 

  32. M. Ben-Chorin, F. Möller, F. Koch, W. Chirmacher, M. Eberhard, Phys. Rev. B 51, 2199–2202 (1995)

    Article  CAS  Google Scholar 

  33. E. Lampin, C. Delurue, M. Lanoo, A.G. Allan, Phys. Rev. B 58, 12044–12048 (1998)

    Article  CAS  Google Scholar 

  34. E.G. Robins, M.P. Stewart, J.M. Buriak, Chem. Commun. 33, 2479–2480 (1999)

    Google Scholar 

  35. S.E. Letant, M.J. Sailor, Adv. Mater. 11, 1505–1508 (1999)

    Article  Google Scholar 

  36. L.T. Canham, Appl. Phys. Lett. 57, 1046–1048 (1990)

    Article  CAS  Google Scholar 

  37. V. Mulloni, L. Pavesi, Appl. Phys. Lett 76, 2523 (2000)

    Article  CAS  Google Scholar 

  38. J. Harper, M.J. Sailor, Langmuir 13, 4652–4658 (1997)

    Article  CAS  Google Scholar 

  39. V. Petrova-Koch, T. Muschik, A. Kux, B.K. Meyer, F. Koch, V. Lehmann, Appl. Phys. Lett 61, 943–945 (1992)

    Article  CAS  Google Scholar 

  40. B.B. Li, D.P. Yu, S.L. Zhang, Phys. Rev. B 59, 1645–1648 (1999)

    Article  CAS  Google Scholar 

  41. Z.F. Sui, P.P. Leong, I.P. Herman, G.S. Higashi, H. Temkin, Appl. Phys. Lett. 60, 2086–2088 (1992)

    Article  CAS  Google Scholar 

  42. I.H. Campbell, P.M. Fauchet, Solid State Commun. 58(10), 739–742 (1986)

    Article  CAS  Google Scholar 

  43. H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625–629 (1981)

    Article  CAS  Google Scholar 

  44. R. Tsu, H. Shen, M. Dutta, Appl. Phys. Lett. 60, 112–114 (1992)

    Article  CAS  Google Scholar 

  45. C. Li, G. Fang, S. Sheng, Z. Chen, J. Wang, S. Ma, X. Zha, Physica E 30, 169–173 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanan Vinod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinod, P.N. The capacitance–voltage measurement of the screen-printed silicon solar cells with electrochemically etched nanostructured porous silicon antireflection coating. J Mater Sci: Mater Electron 24, 1395–1404 (2013). https://doi.org/10.1007/s10854-013-1145-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1145-y

Keywords

Navigation