Abstract
We report the synthesis of mesoporous SnO2 nanoparticles by a microwave assisted hydrothermal process and their application as a gas sensor. The synthesized materials were characterized by transmission electron microscopy, X-ray diffraction technique, X-ray photoelectron spectroscopy, and Photoluminescence spectroscopy. As the results, we found that as-synthesized SnO2 was synthetic Cassiterite with tetragonal structure and spherical in shape with the primary crystallite size of 6–8 nm, and the SnO2 embedded material was mesoporous with average pore sizes of ≈15 nm. Moreover, this material showed excellent thermal stability from 80 to 800 °C and its crystal structure after heat treatment was preserved even at ultrahigh temperature of 800 °C. We demonstrated that this material could be used for detection of the ethanol gas because of its stability and nanoscale size at high temperature. Additionally our investigations also suggest that the processed materials can be used for the photocatalytic oxidation of ethanol. These results propose the potential application of the material for a sense and shoot kind of approach for indoor air purification in pharmaceutical and fermentation monitoring and vehicular control through breath analyzer.
This is a preview of subscription content, access via your institution.







References
P. Behrens, Angew. Chem. Int. Ed. Engl. 35, 515 (1996)
U. Ciesla, F. Schüth, Microporous Mesoporous Mater. 27, 131 (1999)
L. Li, C. Liu, J. Phys. Chem. C 114, 1444 (2010)
A. Taguchi, F. Schüth, Microporous Mesoporous Mater. 77, 1 (2005)
V. Nechita, J. Schoonman, V. Musat, Phys. Status Solidi A 209, 153 (2012)
F. Torney, B.G. Trewyn, V.S.Y. Lin, K. Wang, Nat. Nanotech. 2, 295 (2007)
P. Misaelides, Microporous Mesoporous Mater. 144, 15 (2011)
K. Niesz, P. Yang, G.A. Somorjai, Chem. Comm. 2005, 1986 (2005)
L. Wang, Z. Wang, J. Zhao, Z. Yuan, H. Yang, M. Zhao, Mater. Chem. Phys. 59, 171 (1999)
J.W. Park, D.S. Jung, M.E. Seo, S.Y. Kim, W.J. Moon, C.H. Shin, G. Seo, Microporous Mesoporous Mater. 112, 458 (2008)
C.N.R. Rao, A. Govindaraj, S.R.C. Vivekchand, Ann. Rep. Prog. Chem. A 102, 20 (2006)
P. Periyat, N. Leyland, D.E. McCormack, J. Colreavy, D. Corr, S.C. Pillai, J. Mater. Chem. 20, 3650 (2010)
K.H. Lee, S.W. Song, Appl. Mater. Interface 3, 3697 (2011)
M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005)
S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, J. Phys. Chem. C 113, 17893 (2009)
R. Triantafyllopoulou, C. Tsamis, Phys. Status Solidi A 205, 2643 (2008)
J.H. Lee, N.G. Park, Y.J. Shin, Solar Energy Mater. Solar Cells 95, 179 (2011)
L. Shi, H. Lin, Langmuir 26, 18718 (2010)
R. Demir-Cakan, Y.S. Hu, M. Antonietti, J. Maier, M.M. Titirici, Chem. Mater. 20, 1227 (2008)
S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai, S.H. Kim, Langmuir 20, 6476 (2004)
T. Krishnakumar, R. Jayaprakash, M. Parthibavarman, A.R. Phani, V.N. Singh, B.R. Mehta, Mater. Lett. 63, 896 (2009)
M. Krishna, S. Komarneni, Ceram. Inter. 35, 3375 (2009)
G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Angew. Chem. Int. Ed. 50, 826 (2011)
F. Gu, S.F. Wang, C.F. Song, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 372, 451 (2003)
S.Y. Lee, Y.H. Shin, Y. Kim, S. Kim, S. Ju, J. Lumin. 131, 2565 (2011)
D.J. Norris, M.G. Bawendi, Phys. Rev. B 53, 16338 (1996)
E.M. Wong, P.C. Searson, Appl. Phys. Lett. 74, 2939 (1999)
A. Sharma, S. Kumar, R. Kumar, M. Varshney, K.D. Verma, Adv. Mater. Rapid Commun. 3, 1285 (2009)
D. Chen, L. Gao, J. Colloid Interface Sci. 279, 137 (2004)
E.P. Domashevskaya, S.V. Ryabtsev, S.Y. Turishchev, V.M. Kashkarov, O.A. Chuvenkova, Y.A. Yurakov, Bull. Rus. Acad. Sci. Phys. 72, 504 (2008)
F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 4th edn. (Wiley-Interscience, USA, 1980), p. 393
K.L. Cheng, Microchem. J. 82, 119 (2006)
Y. Shimizu, A. Jono, T. Hyodo, M. Egashira, Sens. Actuators B 108, 56 (2005)
N. Savage, M.S. Diallo, Nanomaterials and water purification: opportunities and challenges. J. Nanoparticle Res. 7, 331–342 (2005)
N. Yamazoe, G. Sakai, K. Shimanoe, Catal. Survey Asia 7, 63 (2003)
A. Dieguez, A. Romano-Rodriguez, A. Vila, J.R. Morante, J. Appl. Phys. 90, 1550 (2001)
S. Sarmah, A. Kumar, Ind. J. Phys. 84, 1211 (2010)
S. Das, S. Kar, S. Chaudhuri, J. Appl. Phys. 99, 1143030 (2006)
K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)
S. Pokhrel, C.E. Simion, V.S. Teodorescu, N. Barsan, U. Weimar, Adv. Funct. Mater. 19, 1767 (2009)
P. Sun, W. Zhao, Y. Cao, Y. Guan, Y. Sun, G. Lu, Cryst. Eng. Commun. 13, 3718 (2011)
P.V. Kamat, R. Huehn, R.A. Nicolaescu, J. Phys. Chem. B 106, 788 (2002)
D.E.D. Bois, US patent 4613845 (1986)
Author information
Authors and Affiliations
Corresponding author
Additional information
Suraj K. Tripathy and Sandeep Kumar Jha previously in Department of Mechanical Engineering, Research Institute of Engineering and Technology, College of Engineering, Korea University, Seoul 136713, South Korea.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Tripathy, S.K., Mishra, A., Jha, S.K. et al. Microwave assisted hydrothermal synthesis of mesoporous SnO2 nanoparticles for ethanol sensing and degradation. J Mater Sci: Mater Electron 24, 2082–2090 (2013). https://doi.org/10.1007/s10854-013-1062-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-013-1062-0
Keywords
- SnO2
- Photocatalytic Activity
- Sensor Response
- Heat Treatment Temperature
- Cassiterite