Skip to main content
Log in

Impact of isovalent defect engineering strategies on carbon-related clusters in silicon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In electron-irradiated silicon (Si) the formation of oxygen-vacancy pairs (VO or A-centers) is deleterious and for this reason isovalent defect engineering strategies have been proposed to suppress their concentration. Carbon-related clusters such as CiOi and CiCs are also important as they are electrically active and their properties need to be determined. The present study has two aims. The first aim is to review the impact of isovalent doping [germanium (Ge), tin (Sn) and lead (Pb)] on the thermal stability of the CiOi and CiCs pairs in Si by means of infrared (IR) spectroscopy. The second aim is to analyze these results and show that the presence of isovalent dopants in Si reduces the temperature of annealing (Tann) of the CiOi pairs and increases the temperature of annealing of the CiCs pairs. The results are discussed in view of recent experimental and theoretical studies. It is suggested that the change in the thermal stability of the C-related defects is due to the local strains induced in the lattice by the oversized isovalent dopants. It is surmised that these strains have an opposite impact on the Tann of the CiOi and CiCs pairs as a result of their different structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Smimizu, M. Uematsu, K.M. Itoh, Phys. Rev. Lett. 98, 095901 (2007)

    Article  Google Scholar 

  2. G.D. Watkins, J. Appl. Phys. 103, 106106 (2008)

    Article  Google Scholar 

  3. A. Chroneos, J. Appl. Phys. 105, 056101 (2009)

    Article  Google Scholar 

  4. C.A. Londos, E.N. Sgourou, A. Chroneos, V.V. Emtsev, Semicond. Sci. Technol. 26, 105024 (2011)

    Article  Google Scholar 

  5. A. Chroneos, C.A. Londos, E.N. Sgourou, P. Pochet, Appl. Phys. Lett. 99, 241901 (2011)

    Article  Google Scholar 

  6. A. Brelot, J. Charlemagne, Radiat. Eff. 9, 65 (1971)

    Article  CAS  Google Scholar 

  7. J. Chen, J. Vanhellemont, E. Simoen, J. Lauwaert, H. Vrielink, J.M. Rafi, H. Ohyama, J. Weber, D. Yang, Phys. Stat. Sol. C 8, 674 (2011)

    Article  CAS  Google Scholar 

  8. K. Schmalz, V.V. Emtsev, Appl. Phys. Lett. 65, 1575 (1994)

    Article  CAS  Google Scholar 

  9. L.I. Khirunenko, V.I. Shakhovtsov, V.V. Shumov, V.I. Yashnik, Mater. Sci. Forum 196–201, 1381 (1995)

    Article  Google Scholar 

  10. C.A. Londos, A. Andrianakis, V. Emtsev, H. Ohyama, Semicond. Sci. Technol. 24, 075002 (2009)

    Article  Google Scholar 

  11. C.A. Londos, A. Andrianakis, V. Emtsev, H. Ohyama, J. Appl. Phys. 105, 123508 (2009)

    Article  Google Scholar 

  12. C.A. Londos, A. Andrianakis, E.N. Sgourou, V. Emtsev, H. Ohyama, J. Appl. Phys. 107, 093520 (2010)

    Article  Google Scholar 

  13. C. Claeys, E. Simoen, V.P. Neimash, A. Kraitchinskii, M. Kras’ko, O. Puzenko, A. Blondeel, P. Clauws, J. Electrochem. Soc. 148, G738 (2001)

    Article  CAS  Google Scholar 

  14. A. Chroneos, C.A. Londos, E.N. Sgourou, J. Appl. Phys. 110, 093507 (2011)

    Article  Google Scholar 

  15. C.A. Londos, D. Aliprantis, E.N. Sgourou, A. Chroneos, P. Pochet, J. Appl. Phys. 111, 123508 (2012)

    Article  Google Scholar 

  16. M.L. David, E. Simoen, C. Clays, V.B. Neimash, M. Kra’sko, A. Kraitchinscii, V. Voytovych, A. Kabaldin, J.F. Barbot, Solid State Phenom. 108–109, 373 (2005)

    Article  Google Scholar 

  17. V.M. Babich, N.P. Baran, K.J.I. Zotov, V.L. Kiritsa, V.B. Koval’chuk, Semiconductors 29, 30 (1995)

    Google Scholar 

  18. G. Davies, R.C. Newman, in Handbook in Semiconductors, ed. by S. Mahajan, vol 3 (Elsevier, Amsterdam, 1994), p. 1557

  19. G. Ferenczi, C.A. Londos, T. Pavelka, M. Somogyi, A. Martens, J. Appl. Phys. 63, 183 (1988)

    Article  CAS  Google Scholar 

  20. S.P. Chappell, R.C. Newman, Semicond. Sci. Technol. 2, 691 (1987)

    Article  CAS  Google Scholar 

  21. C.A. Londos, Semicond. Sci. Technol. 5, 645 (1990)

    Article  CAS  Google Scholar 

  22. E.V. Lavrov, B. Bech Nielsen, J.R. Byberg, B. Hourahine, R. Jones, S. Öberg, P.R. Briddon, Phys. Rev. B 62, 158 (2000)

    Article  CAS  Google Scholar 

  23. G. Davies, E.C. Lightowlers, R.C. Newman, A.S. Oates, Semicond. Sci. Technol. 2, 524 (1987)

    Article  CAS  Google Scholar 

  24. E.V. Lavrov, L. Hoffmann, B. Bech Nielsen, Phys. Rev. B 60, 8081 (1999)

    Article  CAS  Google Scholar 

  25. S.D. Brotherton, P. Bradley, J. Appl. Phys. 53, 5720 (1982)

    Article  CAS  Google Scholar 

  26. A. Khan, M. Yamaguchi, Y. Ohshita, N. Dharmarasu, K. Araki, T. Abe, H. Itoh, T. Ohshima, M. Imaizumi, S. Matsuda, J. Appl. Phys. 90, 1170 (2001)

    Article  CAS  Google Scholar 

  27. K. Murata, Y. Yasutake, K. Nittoh, S. Fukatsu, K. Miki, AIP Adv. 1, 032125 (2011)

    Article  Google Scholar 

  28. A. Chroneos, C.A. Londos, J. Appl. Phys. 107, 093518 (2010)

    Article  Google Scholar 

  29. J.M. Trombetta, G.D. Watkins, Appl. Phys. Lett. 51, 1103 (1987)

    Article  CAS  Google Scholar 

  30. P. Leary, R. Jones, S. Öberg, V.J.B. Torres, Phys. Rev. B 55, 2188 (1997)

    Article  CAS  Google Scholar 

  31. D.J. Backlund, S.K. Estreicher, Phys. B 401–402, 163 (2007)

    Article  Google Scholar 

  32. A. Docaj, S.K. Estreicher, Phys. B 407, 2981 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. I. Yonenaga for the provision of the SnH doped Si sample, Dr V. Neimash for the provision of the Pb and (Pb,Sn) doped Si samples and Prof. V. V. Emtsev for the provision of the Ge doped Si samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chroneos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Londos, C.A., Sgourou, E.N. & Chroneos, A. Impact of isovalent defect engineering strategies on carbon-related clusters in silicon. J Mater Sci: Mater Electron 24, 1696–1701 (2013). https://doi.org/10.1007/s10854-012-0998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0998-9

Keywords

Navigation